Electronegativity and location of anionic ligands drive yttrium NMR for molecular, surface and solid-state structures

Yttrium is present in various forms in molecular compounds and solid-state structures; it typically provides specific mechanical and optical properties. Hence, yttrium containing compounds are used in a broad range of applications such as catalysis, lasers and optical devices. Obtaining descriptors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2020-07, Vol.11 (26), p.6724-6735
Hauptverfasser: Lätsch, Lukas, Lam, Erwin, Copéret, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6735
container_issue 26
container_start_page 6724
container_title Chemical science (Cambridge)
container_volume 11
creator Lätsch, Lukas
Lam, Erwin
Copéret, Christophe
description Yttrium is present in various forms in molecular compounds and solid-state structures; it typically provides specific mechanical and optical properties. Hence, yttrium containing compounds are used in a broad range of applications such as catalysis, lasers and optical devices. Obtaining descriptors that can provide access to a detailed structure-property relationship would therefore be a strong base for the rational design of such applications. Towards this goal, 89 Y (100% abundant spin ½ nucleus), is associated with a broad range of NMR chemical shifts that greatly depend on the coordination environment of Y, rendering 89 Y NMR an attractive method for the characterization of yttrium containing compounds. However, to date, it has been difficult to obtain a direct relationship between 89 Y chemical shifts and its coordination environment. Here, we use computational chemistry to model the chemical shift of a broad range of Y( iii ) molecular compounds with the goal to reveal the underlying factors that determine the 89 Y chemical shift. We show through natural chemical shift (NCS)-analysis that isotropic chemical shifts can easily help to distinguish between different types of ligands solely based on the electronegativity of the central atom of the anionic ligands directly bound to Y( iii ). NCS-analysis further demonstrates that the second most important parameter is the degree of pyramidalization of the three anionic ligands imposed by additional neutral ligands. While isotropic chemical shifts can be similar due to compensating effects, investigation of the chemical shift anisotropy (CSA) enables discriminating between the coordination environment of Y. The yttrium chemical shift signature of molecular and solid-state structures is determined by two key factors: electronegativity (isotropic chemical shift) and pyramidalization (anisotropy) of the anionic ligands.
doi_str_mv 10.1039/d0sc02321c
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2421006667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421006667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-d6aa36816266ac691a7e1c9f0358aa0ceca9e174b8dd2c12788bded2cb3e2aaf3</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhYMozjDOxr0QcSNiaR5VqcpGkHZGhVHBxzrcTm61GaoqbR4N_e8nTg8tuvBu7rmcj0PCIeQxZ684k_q1Y8kyIQW398ipYC1vVCf1_aMW7IScp3TN6kjJO9E_JCdSVt3p9pSUiwltjmHBDWS_83lPYXF0CraeYaFhrHcV3tLJb6qVqIt-h3Sfc_Rlpp8_faVjiHQONahMEF_SVOIIFm-DUpi8a1KGjDTlWGwuEdMj8mCEKeH53T4jPy4vvq8-NFdf3n9cvb1qbCt5bpwCkGrgSigFVmkOPXKrRya7AYBZtKCR9-16cE5YLvphWDusci1RAIzyjLw55G7LekZncckRJrONfoa4NwG8-dtZ_E-zCTvTd6wd9FADnt8FxPCrYMpm9sniNMGCoSQj2lbrTgyMV_TZP-h1KHGp36uU4IwppfpKvThQNoaUIo7Hx3Bmfhdq3rFvq9tCVxV-coBjskfuT-HVf_o_32zdKG8ApCupvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421006667</pqid></control><display><type>article</type><title>Electronegativity and location of anionic ligands drive yttrium NMR for molecular, surface and solid-state structures</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Lätsch, Lukas ; Lam, Erwin ; Copéret, Christophe</creator><creatorcontrib>Lätsch, Lukas ; Lam, Erwin ; Copéret, Christophe</creatorcontrib><description>Yttrium is present in various forms in molecular compounds and solid-state structures; it typically provides specific mechanical and optical properties. Hence, yttrium containing compounds are used in a broad range of applications such as catalysis, lasers and optical devices. Obtaining descriptors that can provide access to a detailed structure-property relationship would therefore be a strong base for the rational design of such applications. Towards this goal, 89 Y (100% abundant spin ½ nucleus), is associated with a broad range of NMR chemical shifts that greatly depend on the coordination environment of Y, rendering 89 Y NMR an attractive method for the characterization of yttrium containing compounds. However, to date, it has been difficult to obtain a direct relationship between 89 Y chemical shifts and its coordination environment. Here, we use computational chemistry to model the chemical shift of a broad range of Y( iii ) molecular compounds with the goal to reveal the underlying factors that determine the 89 Y chemical shift. We show through natural chemical shift (NCS)-analysis that isotropic chemical shifts can easily help to distinguish between different types of ligands solely based on the electronegativity of the central atom of the anionic ligands directly bound to Y( iii ). NCS-analysis further demonstrates that the second most important parameter is the degree of pyramidalization of the three anionic ligands imposed by additional neutral ligands. While isotropic chemical shifts can be similar due to compensating effects, investigation of the chemical shift anisotropy (CSA) enables discriminating between the coordination environment of Y. The yttrium chemical shift signature of molecular and solid-state structures is determined by two key factors: electronegativity (isotropic chemical shift) and pyramidalization (anisotropy) of the anionic ligands.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d0sc02321c</identifier><identifier>PMID: 33033594</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anisotropy ; Chemical equilibrium ; Chemistry ; Computational chemistry ; Coordination ; Electronegativity ; Ligands ; NMR ; Nuclear magnetic resonance ; Optical properties ; Solid state ; Yttrium ; Yttrium isotopes</subject><ispartof>Chemical science (Cambridge), 2020-07, Vol.11 (26), p.6724-6735</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-d6aa36816266ac691a7e1c9f0358aa0ceca9e174b8dd2c12788bded2cb3e2aaf3</citedby><cites>FETCH-LOGICAL-c431t-d6aa36816266ac691a7e1c9f0358aa0ceca9e174b8dd2c12788bded2cb3e2aaf3</cites><orcidid>0000-0002-0125-6396 ; 0000-0002-8641-7928 ; 0000-0001-9660-3890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7504898/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7504898/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Lätsch, Lukas</creatorcontrib><creatorcontrib>Lam, Erwin</creatorcontrib><creatorcontrib>Copéret, Christophe</creatorcontrib><title>Electronegativity and location of anionic ligands drive yttrium NMR for molecular, surface and solid-state structures</title><title>Chemical science (Cambridge)</title><description>Yttrium is present in various forms in molecular compounds and solid-state structures; it typically provides specific mechanical and optical properties. Hence, yttrium containing compounds are used in a broad range of applications such as catalysis, lasers and optical devices. Obtaining descriptors that can provide access to a detailed structure-property relationship would therefore be a strong base for the rational design of such applications. Towards this goal, 89 Y (100% abundant spin ½ nucleus), is associated with a broad range of NMR chemical shifts that greatly depend on the coordination environment of Y, rendering 89 Y NMR an attractive method for the characterization of yttrium containing compounds. However, to date, it has been difficult to obtain a direct relationship between 89 Y chemical shifts and its coordination environment. Here, we use computational chemistry to model the chemical shift of a broad range of Y( iii ) molecular compounds with the goal to reveal the underlying factors that determine the 89 Y chemical shift. We show through natural chemical shift (NCS)-analysis that isotropic chemical shifts can easily help to distinguish between different types of ligands solely based on the electronegativity of the central atom of the anionic ligands directly bound to Y( iii ). NCS-analysis further demonstrates that the second most important parameter is the degree of pyramidalization of the three anionic ligands imposed by additional neutral ligands. While isotropic chemical shifts can be similar due to compensating effects, investigation of the chemical shift anisotropy (CSA) enables discriminating between the coordination environment of Y. The yttrium chemical shift signature of molecular and solid-state structures is determined by two key factors: electronegativity (isotropic chemical shift) and pyramidalization (anisotropy) of the anionic ligands.</description><subject>Anisotropy</subject><subject>Chemical equilibrium</subject><subject>Chemistry</subject><subject>Computational chemistry</subject><subject>Coordination</subject><subject>Electronegativity</subject><subject>Ligands</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Optical properties</subject><subject>Solid state</subject><subject>Yttrium</subject><subject>Yttrium isotopes</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUuLFDEUhYMozjDOxr0QcSNiaR5VqcpGkHZGhVHBxzrcTm61GaoqbR4N_e8nTg8tuvBu7rmcj0PCIeQxZ684k_q1Y8kyIQW398ipYC1vVCf1_aMW7IScp3TN6kjJO9E_JCdSVt3p9pSUiwltjmHBDWS_83lPYXF0CraeYaFhrHcV3tLJb6qVqIt-h3Sfc_Rlpp8_faVjiHQONahMEF_SVOIIFm-DUpi8a1KGjDTlWGwuEdMj8mCEKeH53T4jPy4vvq8-NFdf3n9cvb1qbCt5bpwCkGrgSigFVmkOPXKrRya7AYBZtKCR9-16cE5YLvphWDusci1RAIzyjLw55G7LekZncckRJrONfoa4NwG8-dtZ_E-zCTvTd6wd9FADnt8FxPCrYMpm9sniNMGCoSQj2lbrTgyMV_TZP-h1KHGp36uU4IwppfpKvThQNoaUIo7Hx3Bmfhdq3rFvq9tCVxV-coBjskfuT-HVf_o_32zdKG8ApCupvg</recordid><startdate>20200714</startdate><enddate>20200714</enddate><creator>Lätsch, Lukas</creator><creator>Lam, Erwin</creator><creator>Copéret, Christophe</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0125-6396</orcidid><orcidid>https://orcid.org/0000-0002-8641-7928</orcidid><orcidid>https://orcid.org/0000-0001-9660-3890</orcidid></search><sort><creationdate>20200714</creationdate><title>Electronegativity and location of anionic ligands drive yttrium NMR for molecular, surface and solid-state structures</title><author>Lätsch, Lukas ; Lam, Erwin ; Copéret, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-d6aa36816266ac691a7e1c9f0358aa0ceca9e174b8dd2c12788bded2cb3e2aaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Chemical equilibrium</topic><topic>Chemistry</topic><topic>Computational chemistry</topic><topic>Coordination</topic><topic>Electronegativity</topic><topic>Ligands</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Optical properties</topic><topic>Solid state</topic><topic>Yttrium</topic><topic>Yttrium isotopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lätsch, Lukas</creatorcontrib><creatorcontrib>Lam, Erwin</creatorcontrib><creatorcontrib>Copéret, Christophe</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lätsch, Lukas</au><au>Lam, Erwin</au><au>Copéret, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronegativity and location of anionic ligands drive yttrium NMR for molecular, surface and solid-state structures</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2020-07-14</date><risdate>2020</risdate><volume>11</volume><issue>26</issue><spage>6724</spage><epage>6735</epage><pages>6724-6735</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Yttrium is present in various forms in molecular compounds and solid-state structures; it typically provides specific mechanical and optical properties. Hence, yttrium containing compounds are used in a broad range of applications such as catalysis, lasers and optical devices. Obtaining descriptors that can provide access to a detailed structure-property relationship would therefore be a strong base for the rational design of such applications. Towards this goal, 89 Y (100% abundant spin ½ nucleus), is associated with a broad range of NMR chemical shifts that greatly depend on the coordination environment of Y, rendering 89 Y NMR an attractive method for the characterization of yttrium containing compounds. However, to date, it has been difficult to obtain a direct relationship between 89 Y chemical shifts and its coordination environment. Here, we use computational chemistry to model the chemical shift of a broad range of Y( iii ) molecular compounds with the goal to reveal the underlying factors that determine the 89 Y chemical shift. We show through natural chemical shift (NCS)-analysis that isotropic chemical shifts can easily help to distinguish between different types of ligands solely based on the electronegativity of the central atom of the anionic ligands directly bound to Y( iii ). NCS-analysis further demonstrates that the second most important parameter is the degree of pyramidalization of the three anionic ligands imposed by additional neutral ligands. While isotropic chemical shifts can be similar due to compensating effects, investigation of the chemical shift anisotropy (CSA) enables discriminating between the coordination environment of Y. The yttrium chemical shift signature of molecular and solid-state structures is determined by two key factors: electronegativity (isotropic chemical shift) and pyramidalization (anisotropy) of the anionic ligands.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>33033594</pmid><doi>10.1039/d0sc02321c</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0125-6396</orcidid><orcidid>https://orcid.org/0000-0002-8641-7928</orcidid><orcidid>https://orcid.org/0000-0001-9660-3890</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2020-07, Vol.11 (26), p.6724-6735
issn 2041-6520
2041-6539
language eng
recordid cdi_proquest_journals_2421006667
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Anisotropy
Chemical equilibrium
Chemistry
Computational chemistry
Coordination
Electronegativity
Ligands
NMR
Nuclear magnetic resonance
Optical properties
Solid state
Yttrium
Yttrium isotopes
title Electronegativity and location of anionic ligands drive yttrium NMR for molecular, surface and solid-state structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A30%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronegativity%20and%20location%20of%20anionic%20ligands%20drive%20yttrium%20NMR%20for%20molecular,%20surface%20and%20solid-state%20structures&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=L%C3%A4tsch,%20Lukas&rft.date=2020-07-14&rft.volume=11&rft.issue=26&rft.spage=6724&rft.epage=6735&rft.pages=6724-6735&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d0sc02321c&rft_dat=%3Cproquest_rsc_p%3E2421006667%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421006667&rft_id=info:pmid/33033594&rfr_iscdi=true