Two Examples Related to the Twisted Burnside–Frobenius Theory for Infinitely Generated Groups

TheTBFT f conjecture, which is a modification of a conjecture by Fel’shtyn and Hill, says that if the Reidemeister number R ( φ ) of an automorphism φ of a (countable discrete) group G is finite, then it coincides with the number of fixed points of the corresponding homeomorphism φ ̂ of G ̂ f (the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-08, Vol.248 (5), p.661-666
1. Verfasser: Troitsky, E. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 666
container_issue 5
container_start_page 661
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 248
creator Troitsky, E. V.
description TheTBFT f conjecture, which is a modification of a conjecture by Fel’shtyn and Hill, says that if the Reidemeister number R ( φ ) of an automorphism φ of a (countable discrete) group G is finite, then it coincides with the number of fixed points of the corresponding homeomorphism φ ̂ of G ̂ f (the part of the unitary dual formed by finite-dimensional representations). The study of this problem for residually finite groups has been the subject of some recent activity. We prove here that for infinitely generated residually finite groups there are positive and negative examples for this conjecture. It is detected that the finiteness properties of the number of fixed points of φ itself also differ from the finitely generated case.
doi_str_mv 10.1007/s10958-020-04903-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2420714951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A682250066</galeid><sourcerecordid>A682250066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4630-bef54fa661d91d05867c84314252d7e93812e7b0c71fdffd8ecdd85df14892393</originalsourceid><addsrcrecordid>eNqNks1qGzEUhYfSQlO3L9DVQFddKL2SRiNpmYbENQQKqbsW49GVozAeudIMiXd5h75hn6SKXYgNJg1aSFd85xz93KL4SOGUAsgviYIWigADApUGTuBVcUKF5ERJLV7nNUhGOJfV2-JdSreQRbXiJ4WZ34Xy4r5ZrTtM5TV2zYC2HEI53GA5v_Ppsfw6xj55i38efl_GsMDej6mc32CIm9KFWM5653s_YLcpp9hj3HpMYxjX6X3xxjVdwg__5knx8_Jifv6NXH2fzs7Prkhb1RzIAp2oXFPX1GpqQahatqritGKCWYmaK8pQLqCV1FnnrMLWWiWso5XSjGs-KT7tfNcx_BoxDeY25FPnSMMqBpJWWtAnatl0aHzvwhCbduVTa85qxZgAqOvnKa5ZfuWcOSnIEWq5vX8XenQ-bx-4vojf8z89wudhceXbowEvE-wlfD4QZGbA-2HZjCmZ2Y_rQ_P_snu-bMe2MaQU0Zl19KsmbgwF89iuZteuJuNm264GsojvRCnD_RLj0wc-o_oL-_voCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420714951</pqid></control><display><type>article</type><title>Two Examples Related to the Twisted Burnside–Frobenius Theory for Infinitely Generated Groups</title><source>SpringerLink Journals - AutoHoldings</source><creator>Troitsky, E. V.</creator><creatorcontrib>Troitsky, E. V.</creatorcontrib><description>TheTBFT f conjecture, which is a modification of a conjecture by Fel’shtyn and Hill, says that if the Reidemeister number R ( φ ) of an automorphism φ of a (countable discrete) group G is finite, then it coincides with the number of fixed points of the corresponding homeomorphism φ ̂ of G ̂ f (the part of the unitary dual formed by finite-dimensional representations). The study of this problem for residually finite groups has been the subject of some recent activity. We prove here that for infinitely generated residually finite groups there are positive and negative examples for this conjecture. It is detected that the finiteness properties of the number of fixed points of φ itself also differ from the finitely generated case.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-020-04903-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Automorphisms ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2020-08, Vol.248 (5), p.661-666</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4630-bef54fa661d91d05867c84314252d7e93812e7b0c71fdffd8ecdd85df14892393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-020-04903-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-020-04903-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Troitsky, E. V.</creatorcontrib><title>Two Examples Related to the Twisted Burnside–Frobenius Theory for Infinitely Generated Groups</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>TheTBFT f conjecture, which is a modification of a conjecture by Fel’shtyn and Hill, says that if the Reidemeister number R ( φ ) of an automorphism φ of a (countable discrete) group G is finite, then it coincides with the number of fixed points of the corresponding homeomorphism φ ̂ of G ̂ f (the part of the unitary dual formed by finite-dimensional representations). The study of this problem for residually finite groups has been the subject of some recent activity. We prove here that for infinitely generated residually finite groups there are positive and negative examples for this conjecture. It is detected that the finiteness properties of the number of fixed points of φ itself also differ from the finitely generated case.</description><subject>Automorphisms</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNks1qGzEUhYfSQlO3L9DVQFddKL2SRiNpmYbENQQKqbsW49GVozAeudIMiXd5h75hn6SKXYgNJg1aSFd85xz93KL4SOGUAsgviYIWigADApUGTuBVcUKF5ERJLV7nNUhGOJfV2-JdSreQRbXiJ4WZ34Xy4r5ZrTtM5TV2zYC2HEI53GA5v_Ppsfw6xj55i38efl_GsMDej6mc32CIm9KFWM5653s_YLcpp9hj3HpMYxjX6X3xxjVdwg__5knx8_Jifv6NXH2fzs7Prkhb1RzIAp2oXFPX1GpqQahatqritGKCWYmaK8pQLqCV1FnnrMLWWiWso5XSjGs-KT7tfNcx_BoxDeY25FPnSMMqBpJWWtAnatl0aHzvwhCbduVTa85qxZgAqOvnKa5ZfuWcOSnIEWq5vX8XenQ-bx-4vojf8z89wudhceXbowEvE-wlfD4QZGbA-2HZjCmZ2Y_rQ_P_snu-bMe2MaQU0Zl19KsmbgwF89iuZteuJuNm264GsojvRCnD_RLj0wc-o_oL-_voCw</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Troitsky, E. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20200801</creationdate><title>Two Examples Related to the Twisted Burnside–Frobenius Theory for Infinitely Generated Groups</title><author>Troitsky, E. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4630-bef54fa661d91d05867c84314252d7e93812e7b0c71fdffd8ecdd85df14892393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automorphisms</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Troitsky, E. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Troitsky, E. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two Examples Related to the Twisted Burnside–Frobenius Theory for Infinitely Generated Groups</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>248</volume><issue>5</issue><spage>661</spage><epage>666</epage><pages>661-666</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>TheTBFT f conjecture, which is a modification of a conjecture by Fel’shtyn and Hill, says that if the Reidemeister number R ( φ ) of an automorphism φ of a (countable discrete) group G is finite, then it coincides with the number of fixed points of the corresponding homeomorphism φ ̂ of G ̂ f (the part of the unitary dual formed by finite-dimensional representations). The study of this problem for residually finite groups has been the subject of some recent activity. We prove here that for infinitely generated residually finite groups there are positive and negative examples for this conjecture. It is detected that the finiteness properties of the number of fixed points of φ itself also differ from the finitely generated case.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-020-04903-0</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2020-08, Vol.248 (5), p.661-666
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2420714951
source SpringerLink Journals - AutoHoldings
subjects Automorphisms
Mathematics
Mathematics and Statistics
title Two Examples Related to the Twisted Burnside–Frobenius Theory for Infinitely Generated Groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A39%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20Examples%20Related%20to%20the%20Twisted%20Burnside%E2%80%93Frobenius%20Theory%20for%20Infinitely%20Generated%20Groups&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Troitsky,%20E.%20V.&rft.date=2020-08-01&rft.volume=248&rft.issue=5&rft.spage=661&rft.epage=666&rft.pages=661-666&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-020-04903-0&rft_dat=%3Cgale_proqu%3EA682250066%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420714951&rft_id=info:pmid/&rft_galeid=A682250066&rfr_iscdi=true