Regioselectivity of Epoxide Ring‐Openings via SN2 Reactions Under Basic and Acidic Conditions

We have quantum chemically analyzed the ring‐opening reaction of the model non‐symmetrical epoxide 2,2‐dimethyloxirane under basic and acidic conditions using density functional theory at OLYP/TZ2P. For the first time, our combined activation strain and Kohn–Sham molecular orbital analysis approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of organic chemistry 2020-07, Vol.2020 (25), p.3822-3828
Hauptverfasser: Hansen, Thomas, Vermeeren, Pascal, Haim, Anissa, Dorp, Maarten J. H., Codée, Jeroen D. C., Bickelhaupt, F. Matthias, Hamlin, Trevor A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3828
container_issue 25
container_start_page 3822
container_title European journal of organic chemistry
container_volume 2020
creator Hansen, Thomas
Vermeeren, Pascal
Haim, Anissa
Dorp, Maarten J. H.
Codée, Jeroen D. C.
Bickelhaupt, F. Matthias
Hamlin, Trevor A.
description We have quantum chemically analyzed the ring‐opening reaction of the model non‐symmetrical epoxide 2,2‐dimethyloxirane under basic and acidic conditions using density functional theory at OLYP/TZ2P. For the first time, our combined activation strain and Kohn–Sham molecular orbital analysis approach have revealed the interplay of physical factors that control the regioselectivity of these chemical reactions. Ring‐opening under basic conditions occurs in a regime of strong interaction between the nucleophile (OH–) and the epoxide and the interaction is governed by the steric (Pauli) repulsion. The latter steers the attack preferentially towards the sterically less encumbered Cβ. Under acidic conditions, the interaction between the nucleophile (H2O) and the epoxide is weak and, now, the regioselectivity is governed by the activation strain. Protonation of the epoxide induces elongation of the weaker (CH3)2Cα–O bond, and effectively predistorts the substrate for the attack at the sterically more hindered side, which goes with a less destabilizing overall strain energy. Our quantitative analysis significantly builds on the widely accepted rationales behind the regioselectivity of these ring‐opening reactions and provide a concrete framework for understanding these indispensable textbook reactions. One way or another! Quantum chemical activation strain analyses reveal that the regioselectivity of the classical textbook acid‐ and base‐catalyzed epoxide ring‐opening reactions are controlled by either strain (acidic regime: weak interactions) or steric interactions (basic regime: strong interactions). Our findings provide a concrete quantitative framework for understanding these indispensable textbook reactions.
doi_str_mv 10.1002/ejoc.202000590
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2420532702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420532702</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1880-fc61aa303ca8a8efa632f75ba33b5bb3a55ffd8cfc3edefe0f87ee44a4dfa8c13</originalsourceid><addsrcrecordid>eNo9kE1LAzEQQIMoWKtXzwHPWyfJ7nb3WJf6RbFQLXgL2WRSUupm3bTVvfkT_I3-ErdWepo38JiBR8glgwED4Ne49HrAgQNAksMR6THI8wjSHI47jkUcsVy8npKzEJadk6cp6xE5w4XzAVeo127r1i31lo5r_-kM0pmrFj9f39Maq44C3TpFn584naHqbF8FOq8MNvRGBaepqgwdaWc6LHxl3J9xTk6sWgW8-J99Mr8dvxT30WR691CMJlHNsgwiq1OmlAChVaYytCoV3A6TUglRJmUpVJJYazJttUCDFsFmQ8Q4VrGxKtNM9MnV_m7d-PcNhrVc-k1TdS8ljzkkgg-Bd1a-tz7cCltZN-5NNa1kIHcF5a6gPBSU48dpcdjEL4Jdafw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420532702</pqid></control><display><type>article</type><title>Regioselectivity of Epoxide Ring‐Openings via SN2 Reactions Under Basic and Acidic Conditions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hansen, Thomas ; Vermeeren, Pascal ; Haim, Anissa ; Dorp, Maarten J. H. ; Codée, Jeroen D. C. ; Bickelhaupt, F. Matthias ; Hamlin, Trevor A.</creator><creatorcontrib>Hansen, Thomas ; Vermeeren, Pascal ; Haim, Anissa ; Dorp, Maarten J. H. ; Codée, Jeroen D. C. ; Bickelhaupt, F. Matthias ; Hamlin, Trevor A.</creatorcontrib><description>We have quantum chemically analyzed the ring‐opening reaction of the model non‐symmetrical epoxide 2,2‐dimethyloxirane under basic and acidic conditions using density functional theory at OLYP/TZ2P. For the first time, our combined activation strain and Kohn–Sham molecular orbital analysis approach have revealed the interplay of physical factors that control the regioselectivity of these chemical reactions. Ring‐opening under basic conditions occurs in a regime of strong interaction between the nucleophile (OH–) and the epoxide and the interaction is governed by the steric (Pauli) repulsion. The latter steers the attack preferentially towards the sterically less encumbered Cβ. Under acidic conditions, the interaction between the nucleophile (H2O) and the epoxide is weak and, now, the regioselectivity is governed by the activation strain. Protonation of the epoxide induces elongation of the weaker (CH3)2Cα–O bond, and effectively predistorts the substrate for the attack at the sterically more hindered side, which goes with a less destabilizing overall strain energy. Our quantitative analysis significantly builds on the widely accepted rationales behind the regioselectivity of these ring‐opening reactions and provide a concrete framework for understanding these indispensable textbook reactions. One way or another! Quantum chemical activation strain analyses reveal that the regioselectivity of the classical textbook acid‐ and base‐catalyzed epoxide ring‐opening reactions are controlled by either strain (acidic regime: weak interactions) or steric interactions (basic regime: strong interactions). Our findings provide a concrete quantitative framework for understanding these indispensable textbook reactions.</description><identifier>ISSN: 1434-193X</identifier><identifier>EISSN: 1099-0690</identifier><identifier>DOI: 10.1002/ejoc.202000590</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Activation strain model ; Chemical reactions ; Construction standards ; Density functional calculations ; Density functional theory ; Elongation ; Epoxides ; Molecular orbitals ; Nucleophilic substitution ; Physical factors ; Protonation ; Reactivity ; Regioselectivity ; Strain analysis ; Strong interactions (field theory) ; Substrates</subject><ispartof>European journal of organic chemistry, 2020-07, Vol.2020 (25), p.3822-3828</ispartof><rights>2020 The Authors. Published by Wiley‐VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2100-6837 ; 0000-0002-6291-1569 ; 0000-0003-3531-2138 ; 0000-0002-5128-1004 ; 0000-0001-5402-6378 ; 0000-0003-4655-7747 ; 0000-0003-1836-6396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fejoc.202000590$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fejoc.202000590$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Hansen, Thomas</creatorcontrib><creatorcontrib>Vermeeren, Pascal</creatorcontrib><creatorcontrib>Haim, Anissa</creatorcontrib><creatorcontrib>Dorp, Maarten J. H.</creatorcontrib><creatorcontrib>Codée, Jeroen D. C.</creatorcontrib><creatorcontrib>Bickelhaupt, F. Matthias</creatorcontrib><creatorcontrib>Hamlin, Trevor A.</creatorcontrib><title>Regioselectivity of Epoxide Ring‐Openings via SN2 Reactions Under Basic and Acidic Conditions</title><title>European journal of organic chemistry</title><description>We have quantum chemically analyzed the ring‐opening reaction of the model non‐symmetrical epoxide 2,2‐dimethyloxirane under basic and acidic conditions using density functional theory at OLYP/TZ2P. For the first time, our combined activation strain and Kohn–Sham molecular orbital analysis approach have revealed the interplay of physical factors that control the regioselectivity of these chemical reactions. Ring‐opening under basic conditions occurs in a regime of strong interaction between the nucleophile (OH–) and the epoxide and the interaction is governed by the steric (Pauli) repulsion. The latter steers the attack preferentially towards the sterically less encumbered Cβ. Under acidic conditions, the interaction between the nucleophile (H2O) and the epoxide is weak and, now, the regioselectivity is governed by the activation strain. Protonation of the epoxide induces elongation of the weaker (CH3)2Cα–O bond, and effectively predistorts the substrate for the attack at the sterically more hindered side, which goes with a less destabilizing overall strain energy. Our quantitative analysis significantly builds on the widely accepted rationales behind the regioselectivity of these ring‐opening reactions and provide a concrete framework for understanding these indispensable textbook reactions. One way or another! Quantum chemical activation strain analyses reveal that the regioselectivity of the classical textbook acid‐ and base‐catalyzed epoxide ring‐opening reactions are controlled by either strain (acidic regime: weak interactions) or steric interactions (basic regime: strong interactions). Our findings provide a concrete quantitative framework for understanding these indispensable textbook reactions.</description><subject>Activation strain model</subject><subject>Chemical reactions</subject><subject>Construction standards</subject><subject>Density functional calculations</subject><subject>Density functional theory</subject><subject>Elongation</subject><subject>Epoxides</subject><subject>Molecular orbitals</subject><subject>Nucleophilic substitution</subject><subject>Physical factors</subject><subject>Protonation</subject><subject>Reactivity</subject><subject>Regioselectivity</subject><subject>Strain analysis</subject><subject>Strong interactions (field theory)</subject><subject>Substrates</subject><issn>1434-193X</issn><issn>1099-0690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNo9kE1LAzEQQIMoWKtXzwHPWyfJ7nb3WJf6RbFQLXgL2WRSUupm3bTVvfkT_I3-ErdWepo38JiBR8glgwED4Ne49HrAgQNAksMR6THI8wjSHI47jkUcsVy8npKzEJadk6cp6xE5w4XzAVeo127r1i31lo5r_-kM0pmrFj9f39Maq44C3TpFn584naHqbF8FOq8MNvRGBaepqgwdaWc6LHxl3J9xTk6sWgW8-J99Mr8dvxT30WR691CMJlHNsgwiq1OmlAChVaYytCoV3A6TUglRJmUpVJJYazJttUCDFsFmQ8Q4VrGxKtNM9MnV_m7d-PcNhrVc-k1TdS8ljzkkgg-Bd1a-tz7cCltZN-5NNa1kIHcF5a6gPBSU48dpcdjEL4Jdafw</recordid><startdate>20200707</startdate><enddate>20200707</enddate><creator>Hansen, Thomas</creator><creator>Vermeeren, Pascal</creator><creator>Haim, Anissa</creator><creator>Dorp, Maarten J. H.</creator><creator>Codée, Jeroen D. C.</creator><creator>Bickelhaupt, F. Matthias</creator><creator>Hamlin, Trevor A.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><orcidid>https://orcid.org/0000-0002-2100-6837</orcidid><orcidid>https://orcid.org/0000-0002-6291-1569</orcidid><orcidid>https://orcid.org/0000-0003-3531-2138</orcidid><orcidid>https://orcid.org/0000-0002-5128-1004</orcidid><orcidid>https://orcid.org/0000-0001-5402-6378</orcidid><orcidid>https://orcid.org/0000-0003-4655-7747</orcidid><orcidid>https://orcid.org/0000-0003-1836-6396</orcidid></search><sort><creationdate>20200707</creationdate><title>Regioselectivity of Epoxide Ring‐Openings via SN2 Reactions Under Basic and Acidic Conditions</title><author>Hansen, Thomas ; Vermeeren, Pascal ; Haim, Anissa ; Dorp, Maarten J. H. ; Codée, Jeroen D. C. ; Bickelhaupt, F. Matthias ; Hamlin, Trevor A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1880-fc61aa303ca8a8efa632f75ba33b5bb3a55ffd8cfc3edefe0f87ee44a4dfa8c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation strain model</topic><topic>Chemical reactions</topic><topic>Construction standards</topic><topic>Density functional calculations</topic><topic>Density functional theory</topic><topic>Elongation</topic><topic>Epoxides</topic><topic>Molecular orbitals</topic><topic>Nucleophilic substitution</topic><topic>Physical factors</topic><topic>Protonation</topic><topic>Reactivity</topic><topic>Regioselectivity</topic><topic>Strain analysis</topic><topic>Strong interactions (field theory)</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hansen, Thomas</creatorcontrib><creatorcontrib>Vermeeren, Pascal</creatorcontrib><creatorcontrib>Haim, Anissa</creatorcontrib><creatorcontrib>Dorp, Maarten J. H.</creatorcontrib><creatorcontrib>Codée, Jeroen D. C.</creatorcontrib><creatorcontrib>Bickelhaupt, F. Matthias</creatorcontrib><creatorcontrib>Hamlin, Trevor A.</creatorcontrib><collection>Wiley Online Library Open Access</collection><jtitle>European journal of organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hansen, Thomas</au><au>Vermeeren, Pascal</au><au>Haim, Anissa</au><au>Dorp, Maarten J. H.</au><au>Codée, Jeroen D. C.</au><au>Bickelhaupt, F. Matthias</au><au>Hamlin, Trevor A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regioselectivity of Epoxide Ring‐Openings via SN2 Reactions Under Basic and Acidic Conditions</atitle><jtitle>European journal of organic chemistry</jtitle><date>2020-07-07</date><risdate>2020</risdate><volume>2020</volume><issue>25</issue><spage>3822</spage><epage>3828</epage><pages>3822-3828</pages><issn>1434-193X</issn><eissn>1099-0690</eissn><abstract>We have quantum chemically analyzed the ring‐opening reaction of the model non‐symmetrical epoxide 2,2‐dimethyloxirane under basic and acidic conditions using density functional theory at OLYP/TZ2P. For the first time, our combined activation strain and Kohn–Sham molecular orbital analysis approach have revealed the interplay of physical factors that control the regioselectivity of these chemical reactions. Ring‐opening under basic conditions occurs in a regime of strong interaction between the nucleophile (OH–) and the epoxide and the interaction is governed by the steric (Pauli) repulsion. The latter steers the attack preferentially towards the sterically less encumbered Cβ. Under acidic conditions, the interaction between the nucleophile (H2O) and the epoxide is weak and, now, the regioselectivity is governed by the activation strain. Protonation of the epoxide induces elongation of the weaker (CH3)2Cα–O bond, and effectively predistorts the substrate for the attack at the sterically more hindered side, which goes with a less destabilizing overall strain energy. Our quantitative analysis significantly builds on the widely accepted rationales behind the regioselectivity of these ring‐opening reactions and provide a concrete framework for understanding these indispensable textbook reactions. One way or another! Quantum chemical activation strain analyses reveal that the regioselectivity of the classical textbook acid‐ and base‐catalyzed epoxide ring‐opening reactions are controlled by either strain (acidic regime: weak interactions) or steric interactions (basic regime: strong interactions). Our findings provide a concrete quantitative framework for understanding these indispensable textbook reactions.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ejoc.202000590</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2100-6837</orcidid><orcidid>https://orcid.org/0000-0002-6291-1569</orcidid><orcidid>https://orcid.org/0000-0003-3531-2138</orcidid><orcidid>https://orcid.org/0000-0002-5128-1004</orcidid><orcidid>https://orcid.org/0000-0001-5402-6378</orcidid><orcidid>https://orcid.org/0000-0003-4655-7747</orcidid><orcidid>https://orcid.org/0000-0003-1836-6396</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-193X
ispartof European journal of organic chemistry, 2020-07, Vol.2020 (25), p.3822-3828
issn 1434-193X
1099-0690
language eng
recordid cdi_proquest_journals_2420532702
source Wiley Online Library Journals Frontfile Complete
subjects Activation strain model
Chemical reactions
Construction standards
Density functional calculations
Density functional theory
Elongation
Epoxides
Molecular orbitals
Nucleophilic substitution
Physical factors
Protonation
Reactivity
Regioselectivity
Strain analysis
Strong interactions (field theory)
Substrates
title Regioselectivity of Epoxide Ring‐Openings via SN2 Reactions Under Basic and Acidic Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A13%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regioselectivity%20of%20Epoxide%20Ring%E2%80%90Openings%20via%20SN2%20Reactions%20Under%20Basic%20and%20Acidic%20Conditions&rft.jtitle=European%20journal%20of%20organic%20chemistry&rft.au=Hansen,%20Thomas&rft.date=2020-07-07&rft.volume=2020&rft.issue=25&rft.spage=3822&rft.epage=3828&rft.pages=3822-3828&rft.issn=1434-193X&rft.eissn=1099-0690&rft_id=info:doi/10.1002/ejoc.202000590&rft_dat=%3Cproquest_wiley%3E2420532702%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420532702&rft_id=info:pmid/&rfr_iscdi=true