High‐Performance Tandem Organic Solar Cells Using HSolar as the Interconnecting Layer

Tandem structure provides a practical way to realize high efficiency organic photovoltaic cells, it can be used to extend the wavelength coverage for light harvesting. The interconnecting layer (ICL) between subcells plays a critical role in the reproducibility and performance of tandem solar cells,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2020-07, Vol.10 (25), p.n/a
Hauptverfasser: Ho, Carr Hoi Yi, Kim, Taesoo, Xiong, Yuan, Firdaus, Yuliar, Yi, Xueping, Dong, Qi, Rech, Jeromy J., Gadisa, Abay, Booth, Ronald, O'Connor, Brendan T., Amassian, Aram, Ade, Harald, You, Wei, Anthopoulos, Thomas D., So, Franky
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 25
container_start_page
container_title Advanced energy materials
container_volume 10
creator Ho, Carr Hoi Yi
Kim, Taesoo
Xiong, Yuan
Firdaus, Yuliar
Yi, Xueping
Dong, Qi
Rech, Jeromy J.
Gadisa, Abay
Booth, Ronald
O'Connor, Brendan T.
Amassian, Aram
Ade, Harald
You, Wei
Anthopoulos, Thomas D.
So, Franky
description Tandem structure provides a practical way to realize high efficiency organic photovoltaic cells, it can be used to extend the wavelength coverage for light harvesting. The interconnecting layer (ICL) between subcells plays a critical role in the reproducibility and performance of tandem solar cells, yet the processability of the ICL has been a challenge. In this work the fabrication of highly reproducible and efficient tandem solar cells by employing a commercially available material, PEDOT:PSS HTL Solar (HSolar), as the hole transporting material used for the ICL is reported. Comparing with the conventional PEDOT:PSS Al 4083 (c‐PEDOT), HSolar offers a better wettability on the underlying nonfullerene photoactive layers, resulting in better charge extraction properties of the ICL. When FTAZ:IT‐M and PTB7‐Th:IEICO‐4F are used as the subcells, a power conversion efficiency (PCE) of 14.7% is achieved in the tandem solar cell. To validate the processability of these tandem solar cells, three other research groups have successfully fabricated tandem devices using the same recipe and the highest PCE obtained is 16.1%. With further development of donor polymers and device optimization, the device simulation results show that a PCE > 22% can be realized in tandem cells in the near future. A simple yet highly compatible interconnecting layer for organic tandem solar cell is presented. All double‐junction tandem devices with different active layers show high reproducibility and efficiencies in several laboratories. Among these tandem devices, an excellent PCE of 16.1% is achieved. In addition, most of the tandem devices achieve more than 40% enhancement from the single‐junction organic photovoltaic device.
doi_str_mv 10.1002/aenm.202000823
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2420500682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420500682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3963-88aa126662c26a54c433238f3f5f983fe28860778d3742950b5d7b79a5cce6733</originalsourceid><addsrcrecordid>eNqFkMFKw0AQhhdRsNRePS94Tp3sJpvNsZRqC9EKtnhctttJm5Js6m6K9OYj-Iw-iSmRevQ0w8z3z8BHyG0IwxCA3Wu01ZABAwDJ-AXphSKMAiEjuDz3nF2Tgfe7loEoDYHzHnmbFpvt9-fXC7q8dpW2BulC2zVWdO422haGvtaldnSMZenp0hd2Q6fdSHvabJHObIPO1NaiaU7bTB_R3ZCrXJceB7-1T5YPk8V4GmTzx9l4lAWGp4IHUmodMiEEM0zoODIR54zLnOdxnkqeI5NSQJLINU8ilsawitfJKkl1bAyKhPM-uevu7l39fkDfqF19cLZ9qVjEIAYQrY8-GXaUcbX3DnO1d0Wl3VGFoE7-1MmfOvtrA2kX-ChKPP5Dq9Hk-ekv-wOklHMW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420500682</pqid></control><display><type>article</type><title>High‐Performance Tandem Organic Solar Cells Using HSolar as the Interconnecting Layer</title><source>Wiley Online Library</source><creator>Ho, Carr Hoi Yi ; Kim, Taesoo ; Xiong, Yuan ; Firdaus, Yuliar ; Yi, Xueping ; Dong, Qi ; Rech, Jeromy J. ; Gadisa, Abay ; Booth, Ronald ; O'Connor, Brendan T. ; Amassian, Aram ; Ade, Harald ; You, Wei ; Anthopoulos, Thomas D. ; So, Franky</creator><creatorcontrib>Ho, Carr Hoi Yi ; Kim, Taesoo ; Xiong, Yuan ; Firdaus, Yuliar ; Yi, Xueping ; Dong, Qi ; Rech, Jeromy J. ; Gadisa, Abay ; Booth, Ronald ; O'Connor, Brendan T. ; Amassian, Aram ; Ade, Harald ; You, Wei ; Anthopoulos, Thomas D. ; So, Franky</creatorcontrib><description>Tandem structure provides a practical way to realize high efficiency organic photovoltaic cells, it can be used to extend the wavelength coverage for light harvesting. The interconnecting layer (ICL) between subcells plays a critical role in the reproducibility and performance of tandem solar cells, yet the processability of the ICL has been a challenge. In this work the fabrication of highly reproducible and efficient tandem solar cells by employing a commercially available material, PEDOT:PSS HTL Solar (HSolar), as the hole transporting material used for the ICL is reported. Comparing with the conventional PEDOT:PSS Al 4083 (c‐PEDOT), HSolar offers a better wettability on the underlying nonfullerene photoactive layers, resulting in better charge extraction properties of the ICL. When FTAZ:IT‐M and PTB7‐Th:IEICO‐4F are used as the subcells, a power conversion efficiency (PCE) of 14.7% is achieved in the tandem solar cell. To validate the processability of these tandem solar cells, three other research groups have successfully fabricated tandem devices using the same recipe and the highest PCE obtained is 16.1%. With further development of donor polymers and device optimization, the device simulation results show that a PCE &gt; 22% can be realized in tandem cells in the near future. A simple yet highly compatible interconnecting layer for organic tandem solar cell is presented. All double‐junction tandem devices with different active layers show high reproducibility and efficiencies in several laboratories. Among these tandem devices, an excellent PCE of 16.1% is achieved. In addition, most of the tandem devices achieve more than 40% enhancement from the single‐junction organic photovoltaic device.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202000823</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Energy conversion efficiency ; interconnecting layers ; Optimization ; organic photovoltaics ; Photovoltaic cells ; Reproducibility ; Solar cells ; tandem solar cells ; Wettability</subject><ispartof>Advanced energy materials, 2020-07, Vol.10 (25), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3963-88aa126662c26a54c433238f3f5f983fe28860778d3742950b5d7b79a5cce6733</citedby><cites>FETCH-LOGICAL-c3963-88aa126662c26a54c433238f3f5f983fe28860778d3742950b5d7b79a5cce6733</cites><orcidid>0000-0001-9004-2762 ; 0000-0002-8310-677X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202000823$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202000823$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ho, Carr Hoi Yi</creatorcontrib><creatorcontrib>Kim, Taesoo</creatorcontrib><creatorcontrib>Xiong, Yuan</creatorcontrib><creatorcontrib>Firdaus, Yuliar</creatorcontrib><creatorcontrib>Yi, Xueping</creatorcontrib><creatorcontrib>Dong, Qi</creatorcontrib><creatorcontrib>Rech, Jeromy J.</creatorcontrib><creatorcontrib>Gadisa, Abay</creatorcontrib><creatorcontrib>Booth, Ronald</creatorcontrib><creatorcontrib>O'Connor, Brendan T.</creatorcontrib><creatorcontrib>Amassian, Aram</creatorcontrib><creatorcontrib>Ade, Harald</creatorcontrib><creatorcontrib>You, Wei</creatorcontrib><creatorcontrib>Anthopoulos, Thomas D.</creatorcontrib><creatorcontrib>So, Franky</creatorcontrib><title>High‐Performance Tandem Organic Solar Cells Using HSolar as the Interconnecting Layer</title><title>Advanced energy materials</title><description>Tandem structure provides a practical way to realize high efficiency organic photovoltaic cells, it can be used to extend the wavelength coverage for light harvesting. The interconnecting layer (ICL) between subcells plays a critical role in the reproducibility and performance of tandem solar cells, yet the processability of the ICL has been a challenge. In this work the fabrication of highly reproducible and efficient tandem solar cells by employing a commercially available material, PEDOT:PSS HTL Solar (HSolar), as the hole transporting material used for the ICL is reported. Comparing with the conventional PEDOT:PSS Al 4083 (c‐PEDOT), HSolar offers a better wettability on the underlying nonfullerene photoactive layers, resulting in better charge extraction properties of the ICL. When FTAZ:IT‐M and PTB7‐Th:IEICO‐4F are used as the subcells, a power conversion efficiency (PCE) of 14.7% is achieved in the tandem solar cell. To validate the processability of these tandem solar cells, three other research groups have successfully fabricated tandem devices using the same recipe and the highest PCE obtained is 16.1%. With further development of donor polymers and device optimization, the device simulation results show that a PCE &gt; 22% can be realized in tandem cells in the near future. A simple yet highly compatible interconnecting layer for organic tandem solar cell is presented. All double‐junction tandem devices with different active layers show high reproducibility and efficiencies in several laboratories. Among these tandem devices, an excellent PCE of 16.1% is achieved. In addition, most of the tandem devices achieve more than 40% enhancement from the single‐junction organic photovoltaic device.</description><subject>Energy conversion efficiency</subject><subject>interconnecting layers</subject><subject>Optimization</subject><subject>organic photovoltaics</subject><subject>Photovoltaic cells</subject><subject>Reproducibility</subject><subject>Solar cells</subject><subject>tandem solar cells</subject><subject>Wettability</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKw0AQhhdRsNRePS94Tp3sJpvNsZRqC9EKtnhctttJm5Js6m6K9OYj-Iw-iSmRevQ0w8z3z8BHyG0IwxCA3Wu01ZABAwDJ-AXphSKMAiEjuDz3nF2Tgfe7loEoDYHzHnmbFpvt9-fXC7q8dpW2BulC2zVWdO422haGvtaldnSMZenp0hd2Q6fdSHvabJHObIPO1NaiaU7bTB_R3ZCrXJceB7-1T5YPk8V4GmTzx9l4lAWGp4IHUmodMiEEM0zoODIR54zLnOdxnkqeI5NSQJLINU8ilsawitfJKkl1bAyKhPM-uevu7l39fkDfqF19cLZ9qVjEIAYQrY8-GXaUcbX3DnO1d0Wl3VGFoE7-1MmfOvtrA2kX-ChKPP5Dq9Hk-ekv-wOklHMW</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Ho, Carr Hoi Yi</creator><creator>Kim, Taesoo</creator><creator>Xiong, Yuan</creator><creator>Firdaus, Yuliar</creator><creator>Yi, Xueping</creator><creator>Dong, Qi</creator><creator>Rech, Jeromy J.</creator><creator>Gadisa, Abay</creator><creator>Booth, Ronald</creator><creator>O'Connor, Brendan T.</creator><creator>Amassian, Aram</creator><creator>Ade, Harald</creator><creator>You, Wei</creator><creator>Anthopoulos, Thomas D.</creator><creator>So, Franky</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9004-2762</orcidid><orcidid>https://orcid.org/0000-0002-8310-677X</orcidid></search><sort><creationdate>20200701</creationdate><title>High‐Performance Tandem Organic Solar Cells Using HSolar as the Interconnecting Layer</title><author>Ho, Carr Hoi Yi ; Kim, Taesoo ; Xiong, Yuan ; Firdaus, Yuliar ; Yi, Xueping ; Dong, Qi ; Rech, Jeromy J. ; Gadisa, Abay ; Booth, Ronald ; O'Connor, Brendan T. ; Amassian, Aram ; Ade, Harald ; You, Wei ; Anthopoulos, Thomas D. ; So, Franky</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3963-88aa126662c26a54c433238f3f5f983fe28860778d3742950b5d7b79a5cce6733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Energy conversion efficiency</topic><topic>interconnecting layers</topic><topic>Optimization</topic><topic>organic photovoltaics</topic><topic>Photovoltaic cells</topic><topic>Reproducibility</topic><topic>Solar cells</topic><topic>tandem solar cells</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Carr Hoi Yi</creatorcontrib><creatorcontrib>Kim, Taesoo</creatorcontrib><creatorcontrib>Xiong, Yuan</creatorcontrib><creatorcontrib>Firdaus, Yuliar</creatorcontrib><creatorcontrib>Yi, Xueping</creatorcontrib><creatorcontrib>Dong, Qi</creatorcontrib><creatorcontrib>Rech, Jeromy J.</creatorcontrib><creatorcontrib>Gadisa, Abay</creatorcontrib><creatorcontrib>Booth, Ronald</creatorcontrib><creatorcontrib>O'Connor, Brendan T.</creatorcontrib><creatorcontrib>Amassian, Aram</creatorcontrib><creatorcontrib>Ade, Harald</creatorcontrib><creatorcontrib>You, Wei</creatorcontrib><creatorcontrib>Anthopoulos, Thomas D.</creatorcontrib><creatorcontrib>So, Franky</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Carr Hoi Yi</au><au>Kim, Taesoo</au><au>Xiong, Yuan</au><au>Firdaus, Yuliar</au><au>Yi, Xueping</au><au>Dong, Qi</au><au>Rech, Jeromy J.</au><au>Gadisa, Abay</au><au>Booth, Ronald</au><au>O'Connor, Brendan T.</au><au>Amassian, Aram</au><au>Ade, Harald</au><au>You, Wei</au><au>Anthopoulos, Thomas D.</au><au>So, Franky</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐Performance Tandem Organic Solar Cells Using HSolar as the Interconnecting Layer</atitle><jtitle>Advanced energy materials</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>10</volume><issue>25</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Tandem structure provides a practical way to realize high efficiency organic photovoltaic cells, it can be used to extend the wavelength coverage for light harvesting. The interconnecting layer (ICL) between subcells plays a critical role in the reproducibility and performance of tandem solar cells, yet the processability of the ICL has been a challenge. In this work the fabrication of highly reproducible and efficient tandem solar cells by employing a commercially available material, PEDOT:PSS HTL Solar (HSolar), as the hole transporting material used for the ICL is reported. Comparing with the conventional PEDOT:PSS Al 4083 (c‐PEDOT), HSolar offers a better wettability on the underlying nonfullerene photoactive layers, resulting in better charge extraction properties of the ICL. When FTAZ:IT‐M and PTB7‐Th:IEICO‐4F are used as the subcells, a power conversion efficiency (PCE) of 14.7% is achieved in the tandem solar cell. To validate the processability of these tandem solar cells, three other research groups have successfully fabricated tandem devices using the same recipe and the highest PCE obtained is 16.1%. With further development of donor polymers and device optimization, the device simulation results show that a PCE &gt; 22% can be realized in tandem cells in the near future. A simple yet highly compatible interconnecting layer for organic tandem solar cell is presented. All double‐junction tandem devices with different active layers show high reproducibility and efficiencies in several laboratories. Among these tandem devices, an excellent PCE of 16.1% is achieved. In addition, most of the tandem devices achieve more than 40% enhancement from the single‐junction organic photovoltaic device.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202000823</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9004-2762</orcidid><orcidid>https://orcid.org/0000-0002-8310-677X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2020-07, Vol.10 (25), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2420500682
source Wiley Online Library
subjects Energy conversion efficiency
interconnecting layers
Optimization
organic photovoltaics
Photovoltaic cells
Reproducibility
Solar cells
tandem solar cells
Wettability
title High‐Performance Tandem Organic Solar Cells Using HSolar as the Interconnecting Layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A48%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90Performance%20Tandem%20Organic%20Solar%20Cells%20Using%20HSolar%20as%20the%20Interconnecting%20Layer&rft.jtitle=Advanced%20energy%20materials&rft.au=Ho,%20Carr%20Hoi%20Yi&rft.date=2020-07-01&rft.volume=10&rft.issue=25&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202000823&rft_dat=%3Cproquest_cross%3E2420500682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420500682&rft_id=info:pmid/&rfr_iscdi=true