Coupling Magnetic Single‐Crystal Co2Mo3O8 with Ultrathin Nitrogen‐Rich Carbon Layer for Oxygen Evolution Reaction
Transition‐metal oxides as electrocatalysts for the oxygen evolution reaction (OER) provide a promising route to face the energy and environmental crisis issues. Although palmeirite oxide A2Mo3O8 as OER catalyst has been explored, the correlation between its active sites (tetrahedral or octahedral)...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2020-07, Vol.59 (29), p.11948-11957 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11957 |
---|---|
container_issue | 29 |
container_start_page | 11948 |
container_title | Angewandte Chemie International Edition |
container_volume | 59 |
creator | Ouyang, Ting Wang, Xiao‐Tong Mai, Xiu‐Qiong Chen, An‐Na Tang, Zi‐Yuan Liu, Zhao‐Qing |
description | Transition‐metal oxides as electrocatalysts for the oxygen evolution reaction (OER) provide a promising route to face the energy and environmental crisis issues. Although palmeirite oxide A2Mo3O8 as OER catalyst has been explored, the correlation between its active sites (tetrahedral or octahedral) and OER performance has been elusive. Now, magnetic Co2Mo3O8@NC‐800 composed of highly crystallized Co2Mo3O8 nanosheets and ultrathin N‐rich carbon layer is shown to be an efficient OER catalyst. The catalyst exhibits favorable performance with an overpotential of 331 mV@10 mA cm−2 and 422 mV@40 mA cm−2, and a full water‐splitting electrolyzer with it as anode catalyst shows a cell voltage of 1.67 V@10 mA cm−2 in alkaline. Combined HAADFSTEM, magnetic, and computational results show that factors influencing the OER performance can be attributed to the tetrahedral Co sites (high spin, t23e4), which improve the OER kinetics of rate‐determining step to form *OOH.
Magnetic Co2Mo3O8@NC‐800 composed of single‐crystal Co2Mo3O8 and ultrathin nitrogen‐rich carbon was synthesized to uncover its OER active sites (Td Co2+ or Oh Co2+). Electrochemical data, magnetism data, and computations suggest that the Td Co2+ atoms (high spin, t23e4) in Co2Mo3O8 act as active sites facilitating the rate‐determining step, forming *OOH to promote the reaction kinetics for OER. |
doi_str_mv | 10.1002/anie.202004533 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2420133219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420133219</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2703-302750758f8e4758b6da40cd2e7e7f2bd520234bb1ae51104e46f2dab0f9e8ea3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqVw5WyJc4r_UqfHKipQqT9SoWfLSTatqxAXx6HkxiPwjDwJrop6mlnNp13tIHRPyYASwh51bWDACCNExJxfoB6NGY24lPwyeMF5JJOYXqObptkFPknIsIfa1Lb7ytQbPNebGrzJ8WuYKvj9_kld13hd4dSyueXLBB-M3-J15Z32W1PjhfHObqAO6MrkW5xql9kaz3QHDpfW4eVXF2I8-bRV602IVqDzo7lFV6WuGrj71z5aP03e0pdotnyepuNZtGGS8IgTJmMi46RMQATJhoUWJC8YSJAly4o4vMtFllENMaVEgBiWrNAZKUeQgOZ99HDau3f2o4XGq51tXR1OKiYYoZwzOgrU6EQdTAWd2jvzrl2nKFHHXtWxV3XuVY0X08l54n8EbnDl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420133219</pqid></control><display><type>article</type><title>Coupling Magnetic Single‐Crystal Co2Mo3O8 with Ultrathin Nitrogen‐Rich Carbon Layer for Oxygen Evolution Reaction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ouyang, Ting ; Wang, Xiao‐Tong ; Mai, Xiu‐Qiong ; Chen, An‐Na ; Tang, Zi‐Yuan ; Liu, Zhao‐Qing</creator><creatorcontrib>Ouyang, Ting ; Wang, Xiao‐Tong ; Mai, Xiu‐Qiong ; Chen, An‐Na ; Tang, Zi‐Yuan ; Liu, Zhao‐Qing</creatorcontrib><description>Transition‐metal oxides as electrocatalysts for the oxygen evolution reaction (OER) provide a promising route to face the energy and environmental crisis issues. Although palmeirite oxide A2Mo3O8 as OER catalyst has been explored, the correlation between its active sites (tetrahedral or octahedral) and OER performance has been elusive. Now, magnetic Co2Mo3O8@NC‐800 composed of highly crystallized Co2Mo3O8 nanosheets and ultrathin N‐rich carbon layer is shown to be an efficient OER catalyst. The catalyst exhibits favorable performance with an overpotential of 331 mV@10 mA cm−2 and 422 mV@40 mA cm−2, and a full water‐splitting electrolyzer with it as anode catalyst shows a cell voltage of 1.67 V@10 mA cm−2 in alkaline. Combined HAADFSTEM, magnetic, and computational results show that factors influencing the OER performance can be attributed to the tetrahedral Co sites (high spin, t23e4), which improve the OER kinetics of rate‐determining step to form *OOH.
Magnetic Co2Mo3O8@NC‐800 composed of single‐crystal Co2Mo3O8 and ultrathin nitrogen‐rich carbon was synthesized to uncover its OER active sites (Td Co2+ or Oh Co2+). Electrochemical data, magnetism data, and computations suggest that the Td Co2+ atoms (high spin, t23e4) in Co2Mo3O8 act as active sites facilitating the rate‐determining step, forming *OOH to promote the reaction kinetics for OER.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202004533</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>active sites ; Carbon ; Catalysts ; Computer applications ; Crystallization ; Electrocatalysts ; magnetic materials ; Metal oxides ; Nitrogen ; Oxygen ; oxygen evolution reaction ; Oxygen evolution reactions ; Reaction kinetics ; single-crystal Co2Mo3O8 ; Td Co2</subject><ispartof>Angewandte Chemie International Edition, 2020-07, Vol.59 (29), p.11948-11957</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0727-7809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202004533$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202004533$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ouyang, Ting</creatorcontrib><creatorcontrib>Wang, Xiao‐Tong</creatorcontrib><creatorcontrib>Mai, Xiu‐Qiong</creatorcontrib><creatorcontrib>Chen, An‐Na</creatorcontrib><creatorcontrib>Tang, Zi‐Yuan</creatorcontrib><creatorcontrib>Liu, Zhao‐Qing</creatorcontrib><title>Coupling Magnetic Single‐Crystal Co2Mo3O8 with Ultrathin Nitrogen‐Rich Carbon Layer for Oxygen Evolution Reaction</title><title>Angewandte Chemie International Edition</title><description>Transition‐metal oxides as electrocatalysts for the oxygen evolution reaction (OER) provide a promising route to face the energy and environmental crisis issues. Although palmeirite oxide A2Mo3O8 as OER catalyst has been explored, the correlation between its active sites (tetrahedral or octahedral) and OER performance has been elusive. Now, magnetic Co2Mo3O8@NC‐800 composed of highly crystallized Co2Mo3O8 nanosheets and ultrathin N‐rich carbon layer is shown to be an efficient OER catalyst. The catalyst exhibits favorable performance with an overpotential of 331 mV@10 mA cm−2 and 422 mV@40 mA cm−2, and a full water‐splitting electrolyzer with it as anode catalyst shows a cell voltage of 1.67 V@10 mA cm−2 in alkaline. Combined HAADFSTEM, magnetic, and computational results show that factors influencing the OER performance can be attributed to the tetrahedral Co sites (high spin, t23e4), which improve the OER kinetics of rate‐determining step to form *OOH.
Magnetic Co2Mo3O8@NC‐800 composed of single‐crystal Co2Mo3O8 and ultrathin nitrogen‐rich carbon was synthesized to uncover its OER active sites (Td Co2+ or Oh Co2+). Electrochemical data, magnetism data, and computations suggest that the Td Co2+ atoms (high spin, t23e4) in Co2Mo3O8 act as active sites facilitating the rate‐determining step, forming *OOH to promote the reaction kinetics for OER.</description><subject>active sites</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Computer applications</subject><subject>Crystallization</subject><subject>Electrocatalysts</subject><subject>magnetic materials</subject><subject>Metal oxides</subject><subject>Nitrogen</subject><subject>Oxygen</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Reaction kinetics</subject><subject>single-crystal Co2Mo3O8</subject><subject>Td Co2</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqVw5WyJc4r_UqfHKipQqT9SoWfLSTatqxAXx6HkxiPwjDwJrop6mlnNp13tIHRPyYASwh51bWDACCNExJxfoB6NGY24lPwyeMF5JJOYXqObptkFPknIsIfa1Lb7ytQbPNebGrzJ8WuYKvj9_kld13hd4dSyueXLBB-M3-J15Z32W1PjhfHObqAO6MrkW5xql9kaz3QHDpfW4eVXF2I8-bRV602IVqDzo7lFV6WuGrj71z5aP03e0pdotnyepuNZtGGS8IgTJmMi46RMQATJhoUWJC8YSJAly4o4vMtFllENMaVEgBiWrNAZKUeQgOZ99HDau3f2o4XGq51tXR1OKiYYoZwzOgrU6EQdTAWd2jvzrl2nKFHHXtWxV3XuVY0X08l54n8EbnDl</recordid><startdate>20200713</startdate><enddate>20200713</enddate><creator>Ouyang, Ting</creator><creator>Wang, Xiao‐Tong</creator><creator>Mai, Xiu‐Qiong</creator><creator>Chen, An‐Na</creator><creator>Tang, Zi‐Yuan</creator><creator>Liu, Zhao‐Qing</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-0727-7809</orcidid></search><sort><creationdate>20200713</creationdate><title>Coupling Magnetic Single‐Crystal Co2Mo3O8 with Ultrathin Nitrogen‐Rich Carbon Layer for Oxygen Evolution Reaction</title><author>Ouyang, Ting ; Wang, Xiao‐Tong ; Mai, Xiu‐Qiong ; Chen, An‐Na ; Tang, Zi‐Yuan ; Liu, Zhao‐Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2703-302750758f8e4758b6da40cd2e7e7f2bd520234bb1ae51104e46f2dab0f9e8ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>active sites</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Computer applications</topic><topic>Crystallization</topic><topic>Electrocatalysts</topic><topic>magnetic materials</topic><topic>Metal oxides</topic><topic>Nitrogen</topic><topic>Oxygen</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Reaction kinetics</topic><topic>single-crystal Co2Mo3O8</topic><topic>Td Co2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ouyang, Ting</creatorcontrib><creatorcontrib>Wang, Xiao‐Tong</creatorcontrib><creatorcontrib>Mai, Xiu‐Qiong</creatorcontrib><creatorcontrib>Chen, An‐Na</creatorcontrib><creatorcontrib>Tang, Zi‐Yuan</creatorcontrib><creatorcontrib>Liu, Zhao‐Qing</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ouyang, Ting</au><au>Wang, Xiao‐Tong</au><au>Mai, Xiu‐Qiong</au><au>Chen, An‐Na</au><au>Tang, Zi‐Yuan</au><au>Liu, Zhao‐Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling Magnetic Single‐Crystal Co2Mo3O8 with Ultrathin Nitrogen‐Rich Carbon Layer for Oxygen Evolution Reaction</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2020-07-13</date><risdate>2020</risdate><volume>59</volume><issue>29</issue><spage>11948</spage><epage>11957</epage><pages>11948-11957</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Transition‐metal oxides as electrocatalysts for the oxygen evolution reaction (OER) provide a promising route to face the energy and environmental crisis issues. Although palmeirite oxide A2Mo3O8 as OER catalyst has been explored, the correlation between its active sites (tetrahedral or octahedral) and OER performance has been elusive. Now, magnetic Co2Mo3O8@NC‐800 composed of highly crystallized Co2Mo3O8 nanosheets and ultrathin N‐rich carbon layer is shown to be an efficient OER catalyst. The catalyst exhibits favorable performance with an overpotential of 331 mV@10 mA cm−2 and 422 mV@40 mA cm−2, and a full water‐splitting electrolyzer with it as anode catalyst shows a cell voltage of 1.67 V@10 mA cm−2 in alkaline. Combined HAADFSTEM, magnetic, and computational results show that factors influencing the OER performance can be attributed to the tetrahedral Co sites (high spin, t23e4), which improve the OER kinetics of rate‐determining step to form *OOH.
Magnetic Co2Mo3O8@NC‐800 composed of single‐crystal Co2Mo3O8 and ultrathin nitrogen‐rich carbon was synthesized to uncover its OER active sites (Td Co2+ or Oh Co2+). Electrochemical data, magnetism data, and computations suggest that the Td Co2+ atoms (high spin, t23e4) in Co2Mo3O8 act as active sites facilitating the rate‐determining step, forming *OOH to promote the reaction kinetics for OER.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202004533</doi><tpages>10</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-0727-7809</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2020-07, Vol.59 (29), p.11948-11957 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_journals_2420133219 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | active sites Carbon Catalysts Computer applications Crystallization Electrocatalysts magnetic materials Metal oxides Nitrogen Oxygen oxygen evolution reaction Oxygen evolution reactions Reaction kinetics single-crystal Co2Mo3O8 Td Co2 |
title | Coupling Magnetic Single‐Crystal Co2Mo3O8 with Ultrathin Nitrogen‐Rich Carbon Layer for Oxygen Evolution Reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A40%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20Magnetic%20Single%E2%80%90Crystal%20Co2Mo3O8%20with%20Ultrathin%20Nitrogen%E2%80%90Rich%20Carbon%20Layer%20for%20Oxygen%20Evolution%20Reaction&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Ouyang,%20Ting&rft.date=2020-07-13&rft.volume=59&rft.issue=29&rft.spage=11948&rft.epage=11957&rft.pages=11948-11957&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202004533&rft_dat=%3Cproquest_wiley%3E2420133219%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420133219&rft_id=info:pmid/&rfr_iscdi=true |