Glucose-responsive cascaded nanocatalytic reactor with self-modulation of the tumor microenvironment for enhanced chemo-catalytic therapy
Tumor microenvironment (TME)-mediated nanocatalytic therapy has been deemed as a promising strategy for improving the effectiveness of tumor therapy. Herein, we construct a glucose-responsive cascaded nanocatalytic reactor (MoS 2 @CGTC NCR) which co-loads glucose oxidase (GOx) and chemotherapeutic d...
Gespeichert in:
Veröffentlicht in: | Materials horizons 2020-07, Vol.7 (7), p.1834-1844 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1844 |
---|---|
container_issue | 7 |
container_start_page | 1834 |
container_title | Materials horizons |
container_volume | 7 |
creator | Mei, Linqiang Ma, Dongqing Gao, Qin Zhang, Xiao Fu, Wenhui Dong, Xinghua Xing, Gengmei Yin, Wenyan Gu, Zhanjun Zhao, Yuliang |
description | Tumor microenvironment (TME)-mediated nanocatalytic therapy has been deemed as a promising strategy for improving the effectiveness of tumor therapy. Herein, we construct a glucose-responsive cascaded nanocatalytic reactor (MoS
2
@CGTC NCR) which co-loads glucose oxidase (GOx) and chemotherapeutic drug tirapazamine (TPZ) on the surface of the MoS
2
nanozyme carrier for modulating the TME to achieve self-enhanced chemo-catalytic therapy. Based on the intratumoral ultrahigh glucose concentration, the MoS
2
@CGTC NCR can persistently regulate the TME through oxidizing glucose to produce gluconic acid and H
2
O
2
, while rapidly depleting oxygen to activate the chemotherapeutic. Subsequently, the self-supplied H
+
and H
2
O
2
can markedly boost the subordinate peroxidase-like catalytic efficacy of nano-sized MoS
2
, yielding abundant highly toxic hydroxyl radicals (&z.rad;OH) for nanocatalytic therapy. Meanwhile, MoS
2
can also deplete glutathione (GSH) to reduce the consumption of &z.rad;OH. Both
in vitro
and
in vivo
results demonstrated that the MoS
2
@CGTC NCR performed well in suppressing tumor growth
via
self-enhancing chemo-catalytic therapy. This work highlights the use of self-assembled NCRs for enhanced tumor synergetic therapy
via
TME regulation.
Here, a glucose-responsive cascaded nanocatalytic reactor was proposed for enhanced synergetic chemo-catalytic therapy through persistent TME self-modulation. |
doi_str_mv | 10.1039/d0mh00105h |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2420105080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420105080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-80bb6fd5a327da0ef41619bd7d6c88d796fe09997ab7a2369765dd8b1f43ffbb3</originalsourceid><addsrcrecordid>eNp90U9LwzAYBvAgCo65i3ch4k2oJk3_HmXqJky86LmkyRva0SY1SSf7CH5rMyfbzVNC-OUJ7xOELim5o4SV95L0DSGUpM0JmsQkpVHG0vT0sE_yczRzbk0CYklKCjJB34tuFMZBZMENRrt2A1hwJ7gEiTXXRnDPu61vBbbAhTcWf7W-wQ46FfVGjh33rdHYKOwbwH7sg-hbYQ3oTWuN7kF7rMIh6IZrEVJFA72JjrnhnuXD9gKdKd45mP2tU_Tx_PQ-X0art8XL_GEVCZYkPipIXWdKppzFueQEVEIzWtYyl5koCpmXmQJSlmXO65zHLCvzLJWyqKlKmFJ1zaboZp87WPM5gvPV2oxWhyerOIl39YVigrrdqzCJcxZUNdi253ZbUVLt2q4eyevyt-1lwNd7bJ04uONvVINUwVz9Z9gPqJGLPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420105080</pqid></control><display><type>article</type><title>Glucose-responsive cascaded nanocatalytic reactor with self-modulation of the tumor microenvironment for enhanced chemo-catalytic therapy</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Mei, Linqiang ; Ma, Dongqing ; Gao, Qin ; Zhang, Xiao ; Fu, Wenhui ; Dong, Xinghua ; Xing, Gengmei ; Yin, Wenyan ; Gu, Zhanjun ; Zhao, Yuliang</creator><creatorcontrib>Mei, Linqiang ; Ma, Dongqing ; Gao, Qin ; Zhang, Xiao ; Fu, Wenhui ; Dong, Xinghua ; Xing, Gengmei ; Yin, Wenyan ; Gu, Zhanjun ; Zhao, Yuliang</creatorcontrib><description>Tumor microenvironment (TME)-mediated nanocatalytic therapy has been deemed as a promising strategy for improving the effectiveness of tumor therapy. Herein, we construct a glucose-responsive cascaded nanocatalytic reactor (MoS
2
@CGTC NCR) which co-loads glucose oxidase (GOx) and chemotherapeutic drug tirapazamine (TPZ) on the surface of the MoS
2
nanozyme carrier for modulating the TME to achieve self-enhanced chemo-catalytic therapy. Based on the intratumoral ultrahigh glucose concentration, the MoS
2
@CGTC NCR can persistently regulate the TME through oxidizing glucose to produce gluconic acid and H
2
O
2
, while rapidly depleting oxygen to activate the chemotherapeutic. Subsequently, the self-supplied H
+
and H
2
O
2
can markedly boost the subordinate peroxidase-like catalytic efficacy of nano-sized MoS
2
, yielding abundant highly toxic hydroxyl radicals (&z.rad;OH) for nanocatalytic therapy. Meanwhile, MoS
2
can also deplete glutathione (GSH) to reduce the consumption of &z.rad;OH. Both
in vitro
and
in vivo
results demonstrated that the MoS
2
@CGTC NCR performed well in suppressing tumor growth
via
self-enhancing chemo-catalytic therapy. This work highlights the use of self-assembled NCRs for enhanced tumor synergetic therapy
via
TME regulation.
Here, a glucose-responsive cascaded nanocatalytic reactor was proposed for enhanced synergetic chemo-catalytic therapy through persistent TME self-modulation.</description><identifier>ISSN: 2051-6347</identifier><identifier>EISSN: 2051-6355</identifier><identifier>DOI: 10.1039/d0mh00105h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Biocompatibility ; Depletion ; Gluconic acid ; Glucose ; Glucose oxidase ; Glutathione ; Hydrogen peroxide ; Hydroxyl radicals ; Molybdenum disulfide ; Oxidation ; Peroxidase ; Self-assembly ; Therapy ; Tumors</subject><ispartof>Materials horizons, 2020-07, Vol.7 (7), p.1834-1844</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-80bb6fd5a327da0ef41619bd7d6c88d796fe09997ab7a2369765dd8b1f43ffbb3</citedby><cites>FETCH-LOGICAL-c344t-80bb6fd5a327da0ef41619bd7d6c88d796fe09997ab7a2369765dd8b1f43ffbb3</cites><orcidid>0000-0001-6726-3938 ; 0000-0003-3717-2423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mei, Linqiang</creatorcontrib><creatorcontrib>Ma, Dongqing</creatorcontrib><creatorcontrib>Gao, Qin</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Fu, Wenhui</creatorcontrib><creatorcontrib>Dong, Xinghua</creatorcontrib><creatorcontrib>Xing, Gengmei</creatorcontrib><creatorcontrib>Yin, Wenyan</creatorcontrib><creatorcontrib>Gu, Zhanjun</creatorcontrib><creatorcontrib>Zhao, Yuliang</creatorcontrib><title>Glucose-responsive cascaded nanocatalytic reactor with self-modulation of the tumor microenvironment for enhanced chemo-catalytic therapy</title><title>Materials horizons</title><description>Tumor microenvironment (TME)-mediated nanocatalytic therapy has been deemed as a promising strategy for improving the effectiveness of tumor therapy. Herein, we construct a glucose-responsive cascaded nanocatalytic reactor (MoS
2
@CGTC NCR) which co-loads glucose oxidase (GOx) and chemotherapeutic drug tirapazamine (TPZ) on the surface of the MoS
2
nanozyme carrier for modulating the TME to achieve self-enhanced chemo-catalytic therapy. Based on the intratumoral ultrahigh glucose concentration, the MoS
2
@CGTC NCR can persistently regulate the TME through oxidizing glucose to produce gluconic acid and H
2
O
2
, while rapidly depleting oxygen to activate the chemotherapeutic. Subsequently, the self-supplied H
+
and H
2
O
2
can markedly boost the subordinate peroxidase-like catalytic efficacy of nano-sized MoS
2
, yielding abundant highly toxic hydroxyl radicals (&z.rad;OH) for nanocatalytic therapy. Meanwhile, MoS
2
can also deplete glutathione (GSH) to reduce the consumption of &z.rad;OH. Both
in vitro
and
in vivo
results demonstrated that the MoS
2
@CGTC NCR performed well in suppressing tumor growth
via
self-enhancing chemo-catalytic therapy. This work highlights the use of self-assembled NCRs for enhanced tumor synergetic therapy
via
TME regulation.
Here, a glucose-responsive cascaded nanocatalytic reactor was proposed for enhanced synergetic chemo-catalytic therapy through persistent TME self-modulation.</description><subject>Biocompatibility</subject><subject>Depletion</subject><subject>Gluconic acid</subject><subject>Glucose</subject><subject>Glucose oxidase</subject><subject>Glutathione</subject><subject>Hydrogen peroxide</subject><subject>Hydroxyl radicals</subject><subject>Molybdenum disulfide</subject><subject>Oxidation</subject><subject>Peroxidase</subject><subject>Self-assembly</subject><subject>Therapy</subject><subject>Tumors</subject><issn>2051-6347</issn><issn>2051-6355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90U9LwzAYBvAgCo65i3ch4k2oJk3_HmXqJky86LmkyRva0SY1SSf7CH5rMyfbzVNC-OUJ7xOELim5o4SV95L0DSGUpM0JmsQkpVHG0vT0sE_yczRzbk0CYklKCjJB34tuFMZBZMENRrt2A1hwJ7gEiTXXRnDPu61vBbbAhTcWf7W-wQ46FfVGjh33rdHYKOwbwH7sg-hbYQ3oTWuN7kF7rMIh6IZrEVJFA72JjrnhnuXD9gKdKd45mP2tU_Tx_PQ-X0art8XL_GEVCZYkPipIXWdKppzFueQEVEIzWtYyl5koCpmXmQJSlmXO65zHLCvzLJWyqKlKmFJ1zaboZp87WPM5gvPV2oxWhyerOIl39YVigrrdqzCJcxZUNdi253ZbUVLt2q4eyevyt-1lwNd7bJ04uONvVINUwVz9Z9gPqJGLPw</recordid><startdate>20200706</startdate><enddate>20200706</enddate><creator>Mei, Linqiang</creator><creator>Ma, Dongqing</creator><creator>Gao, Qin</creator><creator>Zhang, Xiao</creator><creator>Fu, Wenhui</creator><creator>Dong, Xinghua</creator><creator>Xing, Gengmei</creator><creator>Yin, Wenyan</creator><creator>Gu, Zhanjun</creator><creator>Zhao, Yuliang</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6726-3938</orcidid><orcidid>https://orcid.org/0000-0003-3717-2423</orcidid></search><sort><creationdate>20200706</creationdate><title>Glucose-responsive cascaded nanocatalytic reactor with self-modulation of the tumor microenvironment for enhanced chemo-catalytic therapy</title><author>Mei, Linqiang ; Ma, Dongqing ; Gao, Qin ; Zhang, Xiao ; Fu, Wenhui ; Dong, Xinghua ; Xing, Gengmei ; Yin, Wenyan ; Gu, Zhanjun ; Zhao, Yuliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-80bb6fd5a327da0ef41619bd7d6c88d796fe09997ab7a2369765dd8b1f43ffbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biocompatibility</topic><topic>Depletion</topic><topic>Gluconic acid</topic><topic>Glucose</topic><topic>Glucose oxidase</topic><topic>Glutathione</topic><topic>Hydrogen peroxide</topic><topic>Hydroxyl radicals</topic><topic>Molybdenum disulfide</topic><topic>Oxidation</topic><topic>Peroxidase</topic><topic>Self-assembly</topic><topic>Therapy</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Linqiang</creatorcontrib><creatorcontrib>Ma, Dongqing</creatorcontrib><creatorcontrib>Gao, Qin</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Fu, Wenhui</creatorcontrib><creatorcontrib>Dong, Xinghua</creatorcontrib><creatorcontrib>Xing, Gengmei</creatorcontrib><creatorcontrib>Yin, Wenyan</creatorcontrib><creatorcontrib>Gu, Zhanjun</creatorcontrib><creatorcontrib>Zhao, Yuliang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Linqiang</au><au>Ma, Dongqing</au><au>Gao, Qin</au><au>Zhang, Xiao</au><au>Fu, Wenhui</au><au>Dong, Xinghua</au><au>Xing, Gengmei</au><au>Yin, Wenyan</au><au>Gu, Zhanjun</au><au>Zhao, Yuliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucose-responsive cascaded nanocatalytic reactor with self-modulation of the tumor microenvironment for enhanced chemo-catalytic therapy</atitle><jtitle>Materials horizons</jtitle><date>2020-07-06</date><risdate>2020</risdate><volume>7</volume><issue>7</issue><spage>1834</spage><epage>1844</epage><pages>1834-1844</pages><issn>2051-6347</issn><eissn>2051-6355</eissn><abstract>Tumor microenvironment (TME)-mediated nanocatalytic therapy has been deemed as a promising strategy for improving the effectiveness of tumor therapy. Herein, we construct a glucose-responsive cascaded nanocatalytic reactor (MoS
2
@CGTC NCR) which co-loads glucose oxidase (GOx) and chemotherapeutic drug tirapazamine (TPZ) on the surface of the MoS
2
nanozyme carrier for modulating the TME to achieve self-enhanced chemo-catalytic therapy. Based on the intratumoral ultrahigh glucose concentration, the MoS
2
@CGTC NCR can persistently regulate the TME through oxidizing glucose to produce gluconic acid and H
2
O
2
, while rapidly depleting oxygen to activate the chemotherapeutic. Subsequently, the self-supplied H
+
and H
2
O
2
can markedly boost the subordinate peroxidase-like catalytic efficacy of nano-sized MoS
2
, yielding abundant highly toxic hydroxyl radicals (&z.rad;OH) for nanocatalytic therapy. Meanwhile, MoS
2
can also deplete glutathione (GSH) to reduce the consumption of &z.rad;OH. Both
in vitro
and
in vivo
results demonstrated that the MoS
2
@CGTC NCR performed well in suppressing tumor growth
via
self-enhancing chemo-catalytic therapy. This work highlights the use of self-assembled NCRs for enhanced tumor synergetic therapy
via
TME regulation.
Here, a glucose-responsive cascaded nanocatalytic reactor was proposed for enhanced synergetic chemo-catalytic therapy through persistent TME self-modulation.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0mh00105h</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6726-3938</orcidid><orcidid>https://orcid.org/0000-0003-3717-2423</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-6347 |
ispartof | Materials horizons, 2020-07, Vol.7 (7), p.1834-1844 |
issn | 2051-6347 2051-6355 |
language | eng |
recordid | cdi_proquest_journals_2420105080 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Biocompatibility Depletion Gluconic acid Glucose Glucose oxidase Glutathione Hydrogen peroxide Hydroxyl radicals Molybdenum disulfide Oxidation Peroxidase Self-assembly Therapy Tumors |
title | Glucose-responsive cascaded nanocatalytic reactor with self-modulation of the tumor microenvironment for enhanced chemo-catalytic therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucose-responsive%20cascaded%20nanocatalytic%20reactor%20with%20self-modulation%20of%20the%20tumor%20microenvironment%20for%20enhanced%20chemo-catalytic%20therapy&rft.jtitle=Materials%20horizons&rft.au=Mei,%20Linqiang&rft.date=2020-07-06&rft.volume=7&rft.issue=7&rft.spage=1834&rft.epage=1844&rft.pages=1834-1844&rft.issn=2051-6347&rft.eissn=2051-6355&rft_id=info:doi/10.1039/d0mh00105h&rft_dat=%3Cproquest_cross%3E2420105080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420105080&rft_id=info:pmid/&rfr_iscdi=true |