The geographic mosaic in parallel: Matching patterns of newt tetrodotoxin levels and snake resistance in multiple predator–prey pairs

The Geographic Mosaic Theory of Coevolution predicts that coevolutionary arms races will vary over time and space because of the diverse ecological settings and population histories of interacting species across the landscape. Thus, understanding coevolution may require investigating broad sets of p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of animal ecology 2020-07, Vol.89 (7), p.1645-1657
Hauptverfasser: Reimche, Jessica S., Brodie, Edmund D., Stokes, Amber N., Ely, Erica J., Moniz, Haley A., Thill, Vicki L., Hallas, Joshua M., Pfrender, Michael E., Feldman, Chris R., Clegg, Sonya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1657
container_issue 7
container_start_page 1645
container_title The Journal of animal ecology
container_volume 89
creator Reimche, Jessica S.
Brodie, Edmund D.
Stokes, Amber N.
Ely, Erica J.
Moniz, Haley A.
Thill, Vicki L.
Hallas, Joshua M.
Pfrender, Michael E.
Brodie, Edmund D.
Feldman, Chris R.
Clegg, Sonya
description The Geographic Mosaic Theory of Coevolution predicts that coevolutionary arms races will vary over time and space because of the diverse ecological settings and population histories of interacting species across the landscape. Thus, understanding coevolution may require investigating broad sets of populations sampled across the range of the interaction. In addition, comparing coevolutionary dynamics between similar systems may reveal the importance of specific factors that structure coevolution. Here, we examine geographic patterns of prey traits and predator traits in the relatively unstudied interaction between the Sierra garter snake (Thamnophis couchii) and sympatric prey, the rough‐skinned newt (Taricha granulosa), Sierra newt (Ta. sierrae) and California newt (Ta. torosa). This system parallels, in space and phenotypes, a classic example of coevolution between predatory common garter snakes (Th. sirtalis) and their toxic newt prey exhibiting hotspots of newt tetrodotoxin (TTX) levels and matching snake TTX resistance. We quantified prey and predator traits from hundreds of individuals across their distributions, and functional trait matching at sympatric sites. We show strong regional patterns of trait covariation across the shared ranges of Th. couchii and newt prey. Traits differ significantly among localities, with lower newt TTX levels and snake TTX resistance at the northern latitudes, and higher TTX levels and snake resistance at southern latitudes. Newts and snakes in northern populations show the highest degree of functional trait matching despite possessing the least extreme traits. Conversely, newts and snakes in southern populations show the greatest mismatch despite possessing exaggerated traits, with some snakes so resistant to TTX they would be unaffected by any sympatric newt. Nevertheless, individual variation was substantial, and appears to offer the opportunity for continued reciprocal selection in most populations. Overall, the three species of newts appear to be engaged in a TTX‐mediated arms race with Th. couchii. These patterns are congruent with those seen between newts and Th. sirtalis, including the same latitudinal gradient in trait covariation, and the potential ‘escape’ from the arms race by snake predators. Such concordance in broad scale patterns across two distinct systems suggests common phenomena might structure geographic mosaics in similar ways. The authors examine a previously unexplored arms race that parallels, i
doi_str_mv 10.1111/1365-2656.13212
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2420052919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420052919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4132-8d9439de448002a4a276cbd8148ebcf4a85c07a19fe30869e0668ff81fa7a8393</originalsourceid><addsrcrecordid>eNqFkM9OGzEQhy1URFLg3FtlqecF2-vs2r1FEaVF_LnA2ZrsziZLnfXWdgq5ceMBeEOepF5Cc8WXsUbffKP5EfKFsxOe3inPi0kmiklxwnPBxR4Z7zqfyJgxwTNVajYin0O4Z4yVguUHZJRYrbSQY_J8u0S6QLfw0C_biq5cgFTajvbgwVq03-kVxGrZdovUihF9F6hraIcPkUaM3tUuusc0YPEv2kChq2no4DdSj6ENEboKB99qbWPbW6S9xxqi869PL-m7SdbWhyOy34ANePxeD8ndj7Pb2c_s8ub812x6mVUyXZipWstc1yilSseBBFEW1bxWXCqcV40ENalYCVw3mDNVaGRFoZpG8QZKULnOD8m3rbf37s8aQzT3bu27tNIIKRibCM0H6nRLVd6F4LExvW9X4DeGMzMEb4aYzRCzeQs-TXx9967nK6x3_P-kE1BsgYfW4uYjn7mYXp9tzf8Ab_WQOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420052919</pqid></control><display><type>article</type><title>The geographic mosaic in parallel: Matching patterns of newt tetrodotoxin levels and snake resistance in multiple predator–prey pairs</title><source>Wiley-Blackwell Free Backfiles(OpenAccess)</source><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek</source><creator>Reimche, Jessica S. ; Brodie, Edmund D. ; Stokes, Amber N. ; Ely, Erica J. ; Moniz, Haley A. ; Thill, Vicki L. ; Hallas, Joshua M. ; Pfrender, Michael E. ; Brodie, Edmund D. ; Feldman, Chris R. ; Clegg, Sonya</creator><contributor>Clegg, Sonya</contributor><creatorcontrib>Reimche, Jessica S. ; Brodie, Edmund D. ; Stokes, Amber N. ; Ely, Erica J. ; Moniz, Haley A. ; Thill, Vicki L. ; Hallas, Joshua M. ; Pfrender, Michael E. ; Brodie, Edmund D. ; Feldman, Chris R. ; Clegg, Sonya ; Clegg, Sonya</creatorcontrib><description>The Geographic Mosaic Theory of Coevolution predicts that coevolutionary arms races will vary over time and space because of the diverse ecological settings and population histories of interacting species across the landscape. Thus, understanding coevolution may require investigating broad sets of populations sampled across the range of the interaction. In addition, comparing coevolutionary dynamics between similar systems may reveal the importance of specific factors that structure coevolution. Here, we examine geographic patterns of prey traits and predator traits in the relatively unstudied interaction between the Sierra garter snake (Thamnophis couchii) and sympatric prey, the rough‐skinned newt (Taricha granulosa), Sierra newt (Ta. sierrae) and California newt (Ta. torosa). This system parallels, in space and phenotypes, a classic example of coevolution between predatory common garter snakes (Th. sirtalis) and their toxic newt prey exhibiting hotspots of newt tetrodotoxin (TTX) levels and matching snake TTX resistance. We quantified prey and predator traits from hundreds of individuals across their distributions, and functional trait matching at sympatric sites. We show strong regional patterns of trait covariation across the shared ranges of Th. couchii and newt prey. Traits differ significantly among localities, with lower newt TTX levels and snake TTX resistance at the northern latitudes, and higher TTX levels and snake resistance at southern latitudes. Newts and snakes in northern populations show the highest degree of functional trait matching despite possessing the least extreme traits. Conversely, newts and snakes in southern populations show the greatest mismatch despite possessing exaggerated traits, with some snakes so resistant to TTX they would be unaffected by any sympatric newt. Nevertheless, individual variation was substantial, and appears to offer the opportunity for continued reciprocal selection in most populations. Overall, the three species of newts appear to be engaged in a TTX‐mediated arms race with Th. couchii. These patterns are congruent with those seen between newts and Th. sirtalis, including the same latitudinal gradient in trait covariation, and the potential ‘escape’ from the arms race by snake predators. Such concordance in broad scale patterns across two distinct systems suggests common phenomena might structure geographic mosaics in similar ways. The authors examine a previously unexplored arms race that parallels, in both space and phenotypes, a classic coevolutionary system involving toxic newts and predatory garter snakes. They find tight covariation in prey and predator phenotypes across the landscape but also zones where snakes appear to outmatch their deadly prey. These patterns are congruent across predator–prey systems, suggesting common phenomena might structure coevolution in similar ways.</description><identifier>ISSN: 0021-8790</identifier><identifier>EISSN: 1365-2656</identifier><identifier>DOI: 10.1111/1365-2656.13212</identifier><identifier>PMID: 32198924</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>adaptation ; Amphibians ; Animals ; arms race ; Coevolution ; Colubridae ; Matching ; Mosaics ; Phenotype ; Phenotypes ; Populations ; Predators ; Predatory Behavior ; Prey ; Salamandridae ; Snakes ; Sympatric populations ; Taricha (Pacific newt) ; Tetrodotoxin ; Thamnophis (garter snake) ; trait matching</subject><ispartof>The Journal of animal ecology, 2020-07, Vol.89 (7), p.1645-1657</ispartof><rights>2020 British Ecological Society</rights><rights>2020 British Ecological Society.</rights><rights>Journal of Animal Ecology © 2020 British Ecological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4132-8d9439de448002a4a276cbd8148ebcf4a85c07a19fe30869e0668ff81fa7a8393</citedby><cites>FETCH-LOGICAL-c4132-8d9439de448002a4a276cbd8148ebcf4a85c07a19fe30869e0668ff81fa7a8393</cites><orcidid>0000-0002-5739-4747 ; 0000-0003-2838-511X ; 0000-0003-4147-4037 ; 0000-0001-6536-7039 ; 0000-0002-6999-0909 ; 0000-0001-6861-0655 ; 0000-0003-2988-3145 ; 0000-0001-6935-7794 ; 0000-0001-9231-8347 ; 0000-0003-2457-0190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1365-2656.13212$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1365-2656.13212$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32198924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Clegg, Sonya</contributor><creatorcontrib>Reimche, Jessica S.</creatorcontrib><creatorcontrib>Brodie, Edmund D.</creatorcontrib><creatorcontrib>Stokes, Amber N.</creatorcontrib><creatorcontrib>Ely, Erica J.</creatorcontrib><creatorcontrib>Moniz, Haley A.</creatorcontrib><creatorcontrib>Thill, Vicki L.</creatorcontrib><creatorcontrib>Hallas, Joshua M.</creatorcontrib><creatorcontrib>Pfrender, Michael E.</creatorcontrib><creatorcontrib>Brodie, Edmund D.</creatorcontrib><creatorcontrib>Feldman, Chris R.</creatorcontrib><creatorcontrib>Clegg, Sonya</creatorcontrib><title>The geographic mosaic in parallel: Matching patterns of newt tetrodotoxin levels and snake resistance in multiple predator–prey pairs</title><title>The Journal of animal ecology</title><addtitle>J Anim Ecol</addtitle><description>The Geographic Mosaic Theory of Coevolution predicts that coevolutionary arms races will vary over time and space because of the diverse ecological settings and population histories of interacting species across the landscape. Thus, understanding coevolution may require investigating broad sets of populations sampled across the range of the interaction. In addition, comparing coevolutionary dynamics between similar systems may reveal the importance of specific factors that structure coevolution. Here, we examine geographic patterns of prey traits and predator traits in the relatively unstudied interaction between the Sierra garter snake (Thamnophis couchii) and sympatric prey, the rough‐skinned newt (Taricha granulosa), Sierra newt (Ta. sierrae) and California newt (Ta. torosa). This system parallels, in space and phenotypes, a classic example of coevolution between predatory common garter snakes (Th. sirtalis) and their toxic newt prey exhibiting hotspots of newt tetrodotoxin (TTX) levels and matching snake TTX resistance. We quantified prey and predator traits from hundreds of individuals across their distributions, and functional trait matching at sympatric sites. We show strong regional patterns of trait covariation across the shared ranges of Th. couchii and newt prey. Traits differ significantly among localities, with lower newt TTX levels and snake TTX resistance at the northern latitudes, and higher TTX levels and snake resistance at southern latitudes. Newts and snakes in northern populations show the highest degree of functional trait matching despite possessing the least extreme traits. Conversely, newts and snakes in southern populations show the greatest mismatch despite possessing exaggerated traits, with some snakes so resistant to TTX they would be unaffected by any sympatric newt. Nevertheless, individual variation was substantial, and appears to offer the opportunity for continued reciprocal selection in most populations. Overall, the three species of newts appear to be engaged in a TTX‐mediated arms race with Th. couchii. These patterns are congruent with those seen between newts and Th. sirtalis, including the same latitudinal gradient in trait covariation, and the potential ‘escape’ from the arms race by snake predators. Such concordance in broad scale patterns across two distinct systems suggests common phenomena might structure geographic mosaics in similar ways. The authors examine a previously unexplored arms race that parallels, in both space and phenotypes, a classic coevolutionary system involving toxic newts and predatory garter snakes. They find tight covariation in prey and predator phenotypes across the landscape but also zones where snakes appear to outmatch their deadly prey. These patterns are congruent across predator–prey systems, suggesting common phenomena might structure coevolution in similar ways.</description><subject>adaptation</subject><subject>Amphibians</subject><subject>Animals</subject><subject>arms race</subject><subject>Coevolution</subject><subject>Colubridae</subject><subject>Matching</subject><subject>Mosaics</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Populations</subject><subject>Predators</subject><subject>Predatory Behavior</subject><subject>Prey</subject><subject>Salamandridae</subject><subject>Snakes</subject><subject>Sympatric populations</subject><subject>Taricha (Pacific newt)</subject><subject>Tetrodotoxin</subject><subject>Thamnophis (garter snake)</subject><subject>trait matching</subject><issn>0021-8790</issn><issn>1365-2656</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM9OGzEQhy1URFLg3FtlqecF2-vs2r1FEaVF_LnA2ZrsziZLnfXWdgq5ceMBeEOepF5Cc8WXsUbffKP5EfKFsxOe3inPi0kmiklxwnPBxR4Z7zqfyJgxwTNVajYin0O4Z4yVguUHZJRYrbSQY_J8u0S6QLfw0C_biq5cgFTajvbgwVq03-kVxGrZdovUihF9F6hraIcPkUaM3tUuusc0YPEv2kChq2no4DdSj6ENEboKB99qbWPbW6S9xxqi869PL-m7SdbWhyOy34ANePxeD8ndj7Pb2c_s8ub812x6mVUyXZipWstc1yilSseBBFEW1bxWXCqcV40ENalYCVw3mDNVaGRFoZpG8QZKULnOD8m3rbf37s8aQzT3bu27tNIIKRibCM0H6nRLVd6F4LExvW9X4DeGMzMEb4aYzRCzeQs-TXx9967nK6x3_P-kE1BsgYfW4uYjn7mYXp9tzf8Ab_WQOQ</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Reimche, Jessica S.</creator><creator>Brodie, Edmund D.</creator><creator>Stokes, Amber N.</creator><creator>Ely, Erica J.</creator><creator>Moniz, Haley A.</creator><creator>Thill, Vicki L.</creator><creator>Hallas, Joshua M.</creator><creator>Pfrender, Michael E.</creator><creator>Brodie, Edmund D.</creator><creator>Feldman, Chris R.</creator><creator>Clegg, Sonya</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-5739-4747</orcidid><orcidid>https://orcid.org/0000-0003-2838-511X</orcidid><orcidid>https://orcid.org/0000-0003-4147-4037</orcidid><orcidid>https://orcid.org/0000-0001-6536-7039</orcidid><orcidid>https://orcid.org/0000-0002-6999-0909</orcidid><orcidid>https://orcid.org/0000-0001-6861-0655</orcidid><orcidid>https://orcid.org/0000-0003-2988-3145</orcidid><orcidid>https://orcid.org/0000-0001-6935-7794</orcidid><orcidid>https://orcid.org/0000-0001-9231-8347</orcidid><orcidid>https://orcid.org/0000-0003-2457-0190</orcidid></search><sort><creationdate>202007</creationdate><title>The geographic mosaic in parallel: Matching patterns of newt tetrodotoxin levels and snake resistance in multiple predator–prey pairs</title><author>Reimche, Jessica S. ; Brodie, Edmund D. ; Stokes, Amber N. ; Ely, Erica J. ; Moniz, Haley A. ; Thill, Vicki L. ; Hallas, Joshua M. ; Pfrender, Michael E. ; Brodie, Edmund D. ; Feldman, Chris R. ; Clegg, Sonya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4132-8d9439de448002a4a276cbd8148ebcf4a85c07a19fe30869e0668ff81fa7a8393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>adaptation</topic><topic>Amphibians</topic><topic>Animals</topic><topic>arms race</topic><topic>Coevolution</topic><topic>Colubridae</topic><topic>Matching</topic><topic>Mosaics</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Populations</topic><topic>Predators</topic><topic>Predatory Behavior</topic><topic>Prey</topic><topic>Salamandridae</topic><topic>Snakes</topic><topic>Sympatric populations</topic><topic>Taricha (Pacific newt)</topic><topic>Tetrodotoxin</topic><topic>Thamnophis (garter snake)</topic><topic>trait matching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reimche, Jessica S.</creatorcontrib><creatorcontrib>Brodie, Edmund D.</creatorcontrib><creatorcontrib>Stokes, Amber N.</creatorcontrib><creatorcontrib>Ely, Erica J.</creatorcontrib><creatorcontrib>Moniz, Haley A.</creatorcontrib><creatorcontrib>Thill, Vicki L.</creatorcontrib><creatorcontrib>Hallas, Joshua M.</creatorcontrib><creatorcontrib>Pfrender, Michael E.</creatorcontrib><creatorcontrib>Brodie, Edmund D.</creatorcontrib><creatorcontrib>Feldman, Chris R.</creatorcontrib><creatorcontrib>Clegg, Sonya</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The Journal of animal ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reimche, Jessica S.</au><au>Brodie, Edmund D.</au><au>Stokes, Amber N.</au><au>Ely, Erica J.</au><au>Moniz, Haley A.</au><au>Thill, Vicki L.</au><au>Hallas, Joshua M.</au><au>Pfrender, Michael E.</au><au>Brodie, Edmund D.</au><au>Feldman, Chris R.</au><au>Clegg, Sonya</au><au>Clegg, Sonya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The geographic mosaic in parallel: Matching patterns of newt tetrodotoxin levels and snake resistance in multiple predator–prey pairs</atitle><jtitle>The Journal of animal ecology</jtitle><addtitle>J Anim Ecol</addtitle><date>2020-07</date><risdate>2020</risdate><volume>89</volume><issue>7</issue><spage>1645</spage><epage>1657</epage><pages>1645-1657</pages><issn>0021-8790</issn><eissn>1365-2656</eissn><abstract>The Geographic Mosaic Theory of Coevolution predicts that coevolutionary arms races will vary over time and space because of the diverse ecological settings and population histories of interacting species across the landscape. Thus, understanding coevolution may require investigating broad sets of populations sampled across the range of the interaction. In addition, comparing coevolutionary dynamics between similar systems may reveal the importance of specific factors that structure coevolution. Here, we examine geographic patterns of prey traits and predator traits in the relatively unstudied interaction between the Sierra garter snake (Thamnophis couchii) and sympatric prey, the rough‐skinned newt (Taricha granulosa), Sierra newt (Ta. sierrae) and California newt (Ta. torosa). This system parallels, in space and phenotypes, a classic example of coevolution between predatory common garter snakes (Th. sirtalis) and their toxic newt prey exhibiting hotspots of newt tetrodotoxin (TTX) levels and matching snake TTX resistance. We quantified prey and predator traits from hundreds of individuals across their distributions, and functional trait matching at sympatric sites. We show strong regional patterns of trait covariation across the shared ranges of Th. couchii and newt prey. Traits differ significantly among localities, with lower newt TTX levels and snake TTX resistance at the northern latitudes, and higher TTX levels and snake resistance at southern latitudes. Newts and snakes in northern populations show the highest degree of functional trait matching despite possessing the least extreme traits. Conversely, newts and snakes in southern populations show the greatest mismatch despite possessing exaggerated traits, with some snakes so resistant to TTX they would be unaffected by any sympatric newt. Nevertheless, individual variation was substantial, and appears to offer the opportunity for continued reciprocal selection in most populations. Overall, the three species of newts appear to be engaged in a TTX‐mediated arms race with Th. couchii. These patterns are congruent with those seen between newts and Th. sirtalis, including the same latitudinal gradient in trait covariation, and the potential ‘escape’ from the arms race by snake predators. Such concordance in broad scale patterns across two distinct systems suggests common phenomena might structure geographic mosaics in similar ways. The authors examine a previously unexplored arms race that parallels, in both space and phenotypes, a classic coevolutionary system involving toxic newts and predatory garter snakes. They find tight covariation in prey and predator phenotypes across the landscape but also zones where snakes appear to outmatch their deadly prey. These patterns are congruent across predator–prey systems, suggesting common phenomena might structure coevolution in similar ways.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>32198924</pmid><doi>10.1111/1365-2656.13212</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5739-4747</orcidid><orcidid>https://orcid.org/0000-0003-2838-511X</orcidid><orcidid>https://orcid.org/0000-0003-4147-4037</orcidid><orcidid>https://orcid.org/0000-0001-6536-7039</orcidid><orcidid>https://orcid.org/0000-0002-6999-0909</orcidid><orcidid>https://orcid.org/0000-0001-6861-0655</orcidid><orcidid>https://orcid.org/0000-0003-2988-3145</orcidid><orcidid>https://orcid.org/0000-0001-6935-7794</orcidid><orcidid>https://orcid.org/0000-0001-9231-8347</orcidid><orcidid>https://orcid.org/0000-0003-2457-0190</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8790
ispartof The Journal of animal ecology, 2020-07, Vol.89 (7), p.1645-1657
issn 0021-8790
1365-2656
language eng
recordid cdi_proquest_journals_2420052919
source Wiley-Blackwell Free Backfiles(OpenAccess); Wiley Online Library - AutoHoldings Journals; MEDLINE; Elektronische Zeitschriftenbibliothek
subjects adaptation
Amphibians
Animals
arms race
Coevolution
Colubridae
Matching
Mosaics
Phenotype
Phenotypes
Populations
Predators
Predatory Behavior
Prey
Salamandridae
Snakes
Sympatric populations
Taricha (Pacific newt)
Tetrodotoxin
Thamnophis (garter snake)
trait matching
title The geographic mosaic in parallel: Matching patterns of newt tetrodotoxin levels and snake resistance in multiple predator–prey pairs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A45%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20geographic%20mosaic%20in%20parallel:%20Matching%20patterns%20of%20newt%20tetrodotoxin%20levels%20and%20snake%20resistance%20in%20multiple%20predator%E2%80%93prey%20pairs&rft.jtitle=The%20Journal%20of%20animal%20ecology&rft.au=Reimche,%20Jessica%20S.&rft.date=2020-07&rft.volume=89&rft.issue=7&rft.spage=1645&rft.epage=1657&rft.pages=1645-1657&rft.issn=0021-8790&rft.eissn=1365-2656&rft_id=info:doi/10.1111/1365-2656.13212&rft_dat=%3Cproquest_cross%3E2420052919%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420052919&rft_id=info:pmid/32198924&rfr_iscdi=true