Nonlinearity effect on dual photonic crystal fiber coupler for generating fully optical logic gates

In this work, we present a numerical investigation of the asymmetric double nonlinear coupling of photonic crystal fibers in an on‐off switch to obtain fully optical logic gates. Ultra‐short pulses (100 fs) are propagated through the device in three distinct excitation power regimes, power below cri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microwave and optical technology letters 2020-09, Vol.62 (9), p.3002-3013
Hauptverfasser: Filho, A. F. G. F., Cavalcante, T. X., Beserra, C. C., Costa, M. B. C., Batista, G. S., Lima, S. V., Freire, M. M., Sousa, J. R. R., Sombra, A. S. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3013
container_issue 9
container_start_page 3002
container_title Microwave and optical technology letters
container_volume 62
creator Filho, A. F. G. F.
Cavalcante, T. X.
Beserra, C. C.
Costa, M. B. C.
Batista, G. S.
Lima, S. V.
Freire, M. M.
Sousa, J. R. R.
Sombra, A. S. B.
description In this work, we present a numerical investigation of the asymmetric double nonlinear coupling of photonic crystal fibers in an on‐off switch to obtain fully optical logic gates. Ultra‐short pulses (100 fs) are propagated through the device in three distinct excitation power regimes, power below critical (Po = 72 kW, where Po represents the excitation power of the device), critical power (Pc = 103.5 kW, where Pc represents critical Power for which the power switching is 50% for both guides. There are cases where Po is above the critical value, there are cases that is below), and power above critical (Po = 110 kW). The pulse switching characteristics are analyzed as a function of the input power and the nonlinearity profile (β‐beta) inserted in one of the component guides. The nonlinearity profiles follow the regimes: constant, increasing and decreasing, and high order effects, such as third‐order dispersion, intrapulse Raman scattering and self‐steepening are included in the generalized Schrödinger nonlinear equation governs the pulse propagation dynamics. The results show that the proposed device can be used to obtain AND, OR, and NOT logic gate. Numerical studies were done from the coupled‐coupled equations solved using the fourth‐order Runge‐Kutta method, using MATLAB as a programming tool for solving equations. The implementation of fully optical logic gates tends to revolutionize new digital systems in the field of data storage, such as optical memory, “replacement” of electronic circuits among other applications. Optical systems have a great advantage as they are free from electromagnetic interference and have high rates of data transmission.
doi_str_mv 10.1002/mop.32101
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2420039300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420039300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2971-9f4be915fb6faeeac156c37fc4e19bf10ce8754dd5097267410b61192080b0813</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqVw4B9Y4sQhZe08HB9RxUsqlAOcI8e1gys3DrYjlH-PIVy57Eirb3Y1g9AlgRUBoDcHN6xySoAcoQUBXmeUVXCMFlDzMqMFY6foLIQ9AOSM0QWSL663plfCmzhhpbWSEbse70Zh8fDhouuNxNJPIaaFNq3yWLpxsEm187hTvfIimr7DerR2wm6IRibUui4ZOxFVOEcnWtigLv50id7v797Wj9lm-_C0vt1kknJGMq6LVnFS6rbSQikhSVnJnGlZKMJbTUCqmpXFblcCZ7RiBYG2IoRTqKGFmuRLdDXfHbz7HFWIzd6Nvk8vG1rQlJjnaSzR9UxJ70LwSjeDNwfhp4ZA89NhkzpsfjtM7M3Mfhmrpv_B5nn7Oju-AeK7c8s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420039300</pqid></control><display><type>article</type><title>Nonlinearity effect on dual photonic crystal fiber coupler for generating fully optical logic gates</title><source>Access via Wiley Online Library</source><creator>Filho, A. F. G. F. ; Cavalcante, T. X. ; Beserra, C. C. ; Costa, M. B. C. ; Batista, G. S. ; Lima, S. V. ; Freire, M. M. ; Sousa, J. R. R. ; Sombra, A. S. B.</creator><creatorcontrib>Filho, A. F. G. F. ; Cavalcante, T. X. ; Beserra, C. C. ; Costa, M. B. C. ; Batista, G. S. ; Lima, S. V. ; Freire, M. M. ; Sousa, J. R. R. ; Sombra, A. S. B.</creatorcontrib><description>In this work, we present a numerical investigation of the asymmetric double nonlinear coupling of photonic crystal fibers in an on‐off switch to obtain fully optical logic gates. Ultra‐short pulses (100 fs) are propagated through the device in three distinct excitation power regimes, power below critical (Po = 72 kW, where Po represents the excitation power of the device), critical power (Pc = 103.5 kW, where Pc represents critical Power for which the power switching is 50% for both guides. There are cases where Po is above the critical value, there are cases that is below), and power above critical (Po = 110 kW). The pulse switching characteristics are analyzed as a function of the input power and the nonlinearity profile (β‐beta) inserted in one of the component guides. The nonlinearity profiles follow the regimes: constant, increasing and decreasing, and high order effects, such as third‐order dispersion, intrapulse Raman scattering and self‐steepening are included in the generalized Schrödinger nonlinear equation governs the pulse propagation dynamics. The results show that the proposed device can be used to obtain AND, OR, and NOT logic gate. Numerical studies were done from the coupled‐coupled equations solved using the fourth‐order Runge‐Kutta method, using MATLAB as a programming tool for solving equations. The implementation of fully optical logic gates tends to revolutionize new digital systems in the field of data storage, such as optical memory, “replacement” of electronic circuits among other applications. Optical systems have a great advantage as they are free from electromagnetic interference and have high rates of data transmission.</description><identifier>ISSN: 0895-2477</identifier><identifier>EISSN: 1098-2760</identifier><identifier>DOI: 10.1002/mop.32101</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Circuits ; Crystal fibers ; Data storage ; Data transmission ; Digital systems ; Electromagnetic interference ; Electronic circuits ; Excitation ; Gates ; Logic circuits ; logic gates ; Mathematical analysis ; nonlinear coupler ; Nonlinear equations ; Nonlinearity ; Numerical analysis ; Optical fibers ; Optical memory (data storage) ; photonic band gap ; photonic crystal fibers ; Photonic crystals ; Pulse propagation ; Raman spectra ; Short pulses ; Switching</subject><ispartof>Microwave and optical technology letters, 2020-09, Vol.62 (9), p.3002-3013</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2971-9f4be915fb6faeeac156c37fc4e19bf10ce8754dd5097267410b61192080b0813</citedby><cites>FETCH-LOGICAL-c2971-9f4be915fb6faeeac156c37fc4e19bf10ce8754dd5097267410b61192080b0813</cites><orcidid>0000-0003-0071-3775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmop.32101$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmop.32101$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Filho, A. F. G. F.</creatorcontrib><creatorcontrib>Cavalcante, T. X.</creatorcontrib><creatorcontrib>Beserra, C. C.</creatorcontrib><creatorcontrib>Costa, M. B. C.</creatorcontrib><creatorcontrib>Batista, G. S.</creatorcontrib><creatorcontrib>Lima, S. V.</creatorcontrib><creatorcontrib>Freire, M. M.</creatorcontrib><creatorcontrib>Sousa, J. R. R.</creatorcontrib><creatorcontrib>Sombra, A. S. B.</creatorcontrib><title>Nonlinearity effect on dual photonic crystal fiber coupler for generating fully optical logic gates</title><title>Microwave and optical technology letters</title><description>In this work, we present a numerical investigation of the asymmetric double nonlinear coupling of photonic crystal fibers in an on‐off switch to obtain fully optical logic gates. Ultra‐short pulses (100 fs) are propagated through the device in three distinct excitation power regimes, power below critical (Po = 72 kW, where Po represents the excitation power of the device), critical power (Pc = 103.5 kW, where Pc represents critical Power for which the power switching is 50% for both guides. There are cases where Po is above the critical value, there are cases that is below), and power above critical (Po = 110 kW). The pulse switching characteristics are analyzed as a function of the input power and the nonlinearity profile (β‐beta) inserted in one of the component guides. The nonlinearity profiles follow the regimes: constant, increasing and decreasing, and high order effects, such as third‐order dispersion, intrapulse Raman scattering and self‐steepening are included in the generalized Schrödinger nonlinear equation governs the pulse propagation dynamics. The results show that the proposed device can be used to obtain AND, OR, and NOT logic gate. Numerical studies were done from the coupled‐coupled equations solved using the fourth‐order Runge‐Kutta method, using MATLAB as a programming tool for solving equations. The implementation of fully optical logic gates tends to revolutionize new digital systems in the field of data storage, such as optical memory, “replacement” of electronic circuits among other applications. Optical systems have a great advantage as they are free from electromagnetic interference and have high rates of data transmission.</description><subject>Circuits</subject><subject>Crystal fibers</subject><subject>Data storage</subject><subject>Data transmission</subject><subject>Digital systems</subject><subject>Electromagnetic interference</subject><subject>Electronic circuits</subject><subject>Excitation</subject><subject>Gates</subject><subject>Logic circuits</subject><subject>logic gates</subject><subject>Mathematical analysis</subject><subject>nonlinear coupler</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Numerical analysis</subject><subject>Optical fibers</subject><subject>Optical memory (data storage)</subject><subject>photonic band gap</subject><subject>photonic crystal fibers</subject><subject>Photonic crystals</subject><subject>Pulse propagation</subject><subject>Raman spectra</subject><subject>Short pulses</subject><subject>Switching</subject><issn>0895-2477</issn><issn>1098-2760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEqVw4B9Y4sQhZe08HB9RxUsqlAOcI8e1gys3DrYjlH-PIVy57Eirb3Y1g9AlgRUBoDcHN6xySoAcoQUBXmeUVXCMFlDzMqMFY6foLIQ9AOSM0QWSL663plfCmzhhpbWSEbse70Zh8fDhouuNxNJPIaaFNq3yWLpxsEm187hTvfIimr7DerR2wm6IRibUui4ZOxFVOEcnWtigLv50id7v797Wj9lm-_C0vt1kknJGMq6LVnFS6rbSQikhSVnJnGlZKMJbTUCqmpXFblcCZ7RiBYG2IoRTqKGFmuRLdDXfHbz7HFWIzd6Nvk8vG1rQlJjnaSzR9UxJ70LwSjeDNwfhp4ZA89NhkzpsfjtM7M3Mfhmrpv_B5nn7Oju-AeK7c8s</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Filho, A. F. G. F.</creator><creator>Cavalcante, T. X.</creator><creator>Beserra, C. C.</creator><creator>Costa, M. B. C.</creator><creator>Batista, G. S.</creator><creator>Lima, S. V.</creator><creator>Freire, M. M.</creator><creator>Sousa, J. R. R.</creator><creator>Sombra, A. S. B.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0071-3775</orcidid></search><sort><creationdate>202009</creationdate><title>Nonlinearity effect on dual photonic crystal fiber coupler for generating fully optical logic gates</title><author>Filho, A. F. G. F. ; Cavalcante, T. X. ; Beserra, C. C. ; Costa, M. B. C. ; Batista, G. S. ; Lima, S. V. ; Freire, M. M. ; Sousa, J. R. R. ; Sombra, A. S. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2971-9f4be915fb6faeeac156c37fc4e19bf10ce8754dd5097267410b61192080b0813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Circuits</topic><topic>Crystal fibers</topic><topic>Data storage</topic><topic>Data transmission</topic><topic>Digital systems</topic><topic>Electromagnetic interference</topic><topic>Electronic circuits</topic><topic>Excitation</topic><topic>Gates</topic><topic>Logic circuits</topic><topic>logic gates</topic><topic>Mathematical analysis</topic><topic>nonlinear coupler</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Numerical analysis</topic><topic>Optical fibers</topic><topic>Optical memory (data storage)</topic><topic>photonic band gap</topic><topic>photonic crystal fibers</topic><topic>Photonic crystals</topic><topic>Pulse propagation</topic><topic>Raman spectra</topic><topic>Short pulses</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filho, A. F. G. F.</creatorcontrib><creatorcontrib>Cavalcante, T. X.</creatorcontrib><creatorcontrib>Beserra, C. C.</creatorcontrib><creatorcontrib>Costa, M. B. C.</creatorcontrib><creatorcontrib>Batista, G. S.</creatorcontrib><creatorcontrib>Lima, S. V.</creatorcontrib><creatorcontrib>Freire, M. M.</creatorcontrib><creatorcontrib>Sousa, J. R. R.</creatorcontrib><creatorcontrib>Sombra, A. S. B.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microwave and optical technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filho, A. F. G. F.</au><au>Cavalcante, T. X.</au><au>Beserra, C. C.</au><au>Costa, M. B. C.</au><au>Batista, G. S.</au><au>Lima, S. V.</au><au>Freire, M. M.</au><au>Sousa, J. R. R.</au><au>Sombra, A. S. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinearity effect on dual photonic crystal fiber coupler for generating fully optical logic gates</atitle><jtitle>Microwave and optical technology letters</jtitle><date>2020-09</date><risdate>2020</risdate><volume>62</volume><issue>9</issue><spage>3002</spage><epage>3013</epage><pages>3002-3013</pages><issn>0895-2477</issn><eissn>1098-2760</eissn><abstract>In this work, we present a numerical investigation of the asymmetric double nonlinear coupling of photonic crystal fibers in an on‐off switch to obtain fully optical logic gates. Ultra‐short pulses (100 fs) are propagated through the device in three distinct excitation power regimes, power below critical (Po = 72 kW, where Po represents the excitation power of the device), critical power (Pc = 103.5 kW, where Pc represents critical Power for which the power switching is 50% for both guides. There are cases where Po is above the critical value, there are cases that is below), and power above critical (Po = 110 kW). The pulse switching characteristics are analyzed as a function of the input power and the nonlinearity profile (β‐beta) inserted in one of the component guides. The nonlinearity profiles follow the regimes: constant, increasing and decreasing, and high order effects, such as third‐order dispersion, intrapulse Raman scattering and self‐steepening are included in the generalized Schrödinger nonlinear equation governs the pulse propagation dynamics. The results show that the proposed device can be used to obtain AND, OR, and NOT logic gate. Numerical studies were done from the coupled‐coupled equations solved using the fourth‐order Runge‐Kutta method, using MATLAB as a programming tool for solving equations. The implementation of fully optical logic gates tends to revolutionize new digital systems in the field of data storage, such as optical memory, “replacement” of electronic circuits among other applications. Optical systems have a great advantage as they are free from electromagnetic interference and have high rates of data transmission.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/mop.32101</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0071-3775</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0895-2477
ispartof Microwave and optical technology letters, 2020-09, Vol.62 (9), p.3002-3013
issn 0895-2477
1098-2760
language eng
recordid cdi_proquest_journals_2420039300
source Access via Wiley Online Library
subjects Circuits
Crystal fibers
Data storage
Data transmission
Digital systems
Electromagnetic interference
Electronic circuits
Excitation
Gates
Logic circuits
logic gates
Mathematical analysis
nonlinear coupler
Nonlinear equations
Nonlinearity
Numerical analysis
Optical fibers
Optical memory (data storage)
photonic band gap
photonic crystal fibers
Photonic crystals
Pulse propagation
Raman spectra
Short pulses
Switching
title Nonlinearity effect on dual photonic crystal fiber coupler for generating fully optical logic gates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A51%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinearity%20effect%20on%20dual%20photonic%20crystal%20fiber%20coupler%20for%20generating%20fully%20optical%20logic%20gates&rft.jtitle=Microwave%20and%20optical%20technology%20letters&rft.au=Filho,%20A.%20F.%20G.%20F.&rft.date=2020-09&rft.volume=62&rft.issue=9&rft.spage=3002&rft.epage=3013&rft.pages=3002-3013&rft.issn=0895-2477&rft.eissn=1098-2760&rft_id=info:doi/10.1002/mop.32101&rft_dat=%3Cproquest_cross%3E2420039300%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420039300&rft_id=info:pmid/&rfr_iscdi=true