A new formulation for fluid–structure interaction in pipes conveying fluids using Mindlin shell element and 3-D acoustic fluid element

This paper explores the vibratory behavior of fluid-conveying flexible shells using a new generic finite element formulation employing the first-order shear deformation theory. The flexible tube conveying fluid is modeled using eight-noded curved Mindlin shell elements, which incorporate the effects...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Brazilian Society of Mechanical Sciences and Engineering 2020-07, Vol.42 (7), Article 388
Hauptverfasser: Krishna R, Kamal, Kochupillai, Jayaraj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Journal of the Brazilian Society of Mechanical Sciences and Engineering
container_volume 42
creator Krishna R, Kamal
Kochupillai, Jayaraj
description This paper explores the vibratory behavior of fluid-conveying flexible shells using a new generic finite element formulation employing the first-order shear deformation theory. The flexible tube conveying fluid is modeled using eight-noded curved Mindlin shell elements, which incorporate the effects such as shearing deformations and rotary inertia. The fluid is modeled using twenty noded isoparametric acoustic fluid elements. Solving the wave equation for an abstract scalar field velocity potential, we get the equations of motion for the fluid element. The energy transfer within the fluid and the shell is idealized with the pressure and velocity boundary conditions, which guarantees proper contact between the fluid and structure. The flexible tubes find various applications in medical as well as pharmaceutical industries. Flexible tubes demand minimal energy to excite. Hence, they can find applications in the flow measuring devices, which use vibration techniques. There is a difference in the fundamental frequencies of silicone tubes measured in the horizontal and vertical planes. This difference is due to the sagging of flexible pipes, which causes a beat phenomenon. A novel laser scanning technique is proposed to obtain the actual dimensions of flexible tubes when it sags due to gravity. This actual dimension is analyzed using the new formulation developed. The numerical results, with the actual dimensions measured using the scanning technique, give a good match with the experimental results.
doi_str_mv 10.1007/s40430-020-02477-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2419869920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419869920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8c1406131b196fffaed548c2d2244ba2521b3c62b1432e6b8f9bd2413b1fc3943</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyWmAO-xXHGqlylIhaYLcexi6vUCXYC6sbIzhvyJLgNiI3B8jk633eO9ANwitE5Rqi4iAwxijJEto8VRYb3wAQLxDPKS7yfal6ILBeFOARHMa4QoiTn-QR8zKA3b9C2YT00qnet39bQNoOrv94_Yx8G3Q_BQOd7E5TeEc7DznUmQt36V7NxfjkKEQ5x29w7XzcJis-maaBpzNr4HipfQ5pdQqXbIfZOj87v-BgcWNVEc_LzT8HT9dXj_DZbPNzczWeLTFNc9pnQmCGOKa5wya21ytQ5E5rUhDBWKZITXFHNSYUZJYZXwpZVTRimFbaaloxOwdm4twvty2BiL1ftEHw6KRNWCl6WBCWKjJQObYzBWNkFt1ZhIzGS28TlmLhMictd4hIniY5STLBfmvC3-h_rG426hqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419869920</pqid></control><display><type>article</type><title>A new formulation for fluid–structure interaction in pipes conveying fluids using Mindlin shell element and 3-D acoustic fluid element</title><source>SpringerLink_现刊</source><creator>Krishna R, Kamal ; Kochupillai, Jayaraj</creator><creatorcontrib>Krishna R, Kamal ; Kochupillai, Jayaraj</creatorcontrib><description>This paper explores the vibratory behavior of fluid-conveying flexible shells using a new generic finite element formulation employing the first-order shear deformation theory. The flexible tube conveying fluid is modeled using eight-noded curved Mindlin shell elements, which incorporate the effects such as shearing deformations and rotary inertia. The fluid is modeled using twenty noded isoparametric acoustic fluid elements. Solving the wave equation for an abstract scalar field velocity potential, we get the equations of motion for the fluid element. The energy transfer within the fluid and the shell is idealized with the pressure and velocity boundary conditions, which guarantees proper contact between the fluid and structure. The flexible tubes find various applications in medical as well as pharmaceutical industries. Flexible tubes demand minimal energy to excite. Hence, they can find applications in the flow measuring devices, which use vibration techniques. There is a difference in the fundamental frequencies of silicone tubes measured in the horizontal and vertical planes. This difference is due to the sagging of flexible pipes, which causes a beat phenomenon. A novel laser scanning technique is proposed to obtain the actual dimensions of flexible tubes when it sags due to gravity. This actual dimension is analyzed using the new formulation developed. The numerical results, with the actual dimensions measured using the scanning technique, give a good match with the experimental results.</description><identifier>ISSN: 1678-5878</identifier><identifier>EISSN: 1806-3691</identifier><identifier>DOI: 10.1007/s40430-020-02477-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundary conditions ; Computational fluid dynamics ; Contact pressure ; Conveying ; Deformation effects ; Energy transfer ; Engineering ; Equations of motion ; Flexible pipes ; Fluid-structure interaction ; Fluids ; Measuring instruments ; Mechanical Engineering ; Mindlin plates ; Resonant frequencies ; Rotary inertia ; Scalars ; Scanning ; Shear deformation ; Shearing ; Technical Paper ; Tubes ; Vibration measurement ; Wave equations</subject><ispartof>Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020-07, Vol.42 (7), Article 388</ispartof><rights>The Brazilian Society of Mechanical Sciences and Engineering 2020</rights><rights>The Brazilian Society of Mechanical Sciences and Engineering 2020.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8c1406131b196fffaed548c2d2244ba2521b3c62b1432e6b8f9bd2413b1fc3943</citedby><cites>FETCH-LOGICAL-c319t-8c1406131b196fffaed548c2d2244ba2521b3c62b1432e6b8f9bd2413b1fc3943</cites><orcidid>0000-0002-1704-1437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40430-020-02477-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40430-020-02477-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Krishna R, Kamal</creatorcontrib><creatorcontrib>Kochupillai, Jayaraj</creatorcontrib><title>A new formulation for fluid–structure interaction in pipes conveying fluids using Mindlin shell element and 3-D acoustic fluid element</title><title>Journal of the Brazilian Society of Mechanical Sciences and Engineering</title><addtitle>J Braz. Soc. Mech. Sci. Eng</addtitle><description>This paper explores the vibratory behavior of fluid-conveying flexible shells using a new generic finite element formulation employing the first-order shear deformation theory. The flexible tube conveying fluid is modeled using eight-noded curved Mindlin shell elements, which incorporate the effects such as shearing deformations and rotary inertia. The fluid is modeled using twenty noded isoparametric acoustic fluid elements. Solving the wave equation for an abstract scalar field velocity potential, we get the equations of motion for the fluid element. The energy transfer within the fluid and the shell is idealized with the pressure and velocity boundary conditions, which guarantees proper contact between the fluid and structure. The flexible tubes find various applications in medical as well as pharmaceutical industries. Flexible tubes demand minimal energy to excite. Hence, they can find applications in the flow measuring devices, which use vibration techniques. There is a difference in the fundamental frequencies of silicone tubes measured in the horizontal and vertical planes. This difference is due to the sagging of flexible pipes, which causes a beat phenomenon. A novel laser scanning technique is proposed to obtain the actual dimensions of flexible tubes when it sags due to gravity. This actual dimension is analyzed using the new formulation developed. The numerical results, with the actual dimensions measured using the scanning technique, give a good match with the experimental results.</description><subject>Boundary conditions</subject><subject>Computational fluid dynamics</subject><subject>Contact pressure</subject><subject>Conveying</subject><subject>Deformation effects</subject><subject>Energy transfer</subject><subject>Engineering</subject><subject>Equations of motion</subject><subject>Flexible pipes</subject><subject>Fluid-structure interaction</subject><subject>Fluids</subject><subject>Measuring instruments</subject><subject>Mechanical Engineering</subject><subject>Mindlin plates</subject><subject>Resonant frequencies</subject><subject>Rotary inertia</subject><subject>Scalars</subject><subject>Scanning</subject><subject>Shear deformation</subject><subject>Shearing</subject><subject>Technical Paper</subject><subject>Tubes</subject><subject>Vibration measurement</subject><subject>Wave equations</subject><issn>1678-5878</issn><issn>1806-3691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAkyWmAO-xXHGqlylIhaYLcexi6vUCXYC6sbIzhvyJLgNiI3B8jk633eO9ANwitE5Rqi4iAwxijJEto8VRYb3wAQLxDPKS7yfal6ILBeFOARHMa4QoiTn-QR8zKA3b9C2YT00qnet39bQNoOrv94_Yx8G3Q_BQOd7E5TeEc7DznUmQt36V7NxfjkKEQ5x29w7XzcJis-maaBpzNr4HipfQ5pdQqXbIfZOj87v-BgcWNVEc_LzT8HT9dXj_DZbPNzczWeLTFNc9pnQmCGOKa5wya21ytQ5E5rUhDBWKZITXFHNSYUZJYZXwpZVTRimFbaaloxOwdm4twvty2BiL1ftEHw6KRNWCl6WBCWKjJQObYzBWNkFt1ZhIzGS28TlmLhMictd4hIniY5STLBfmvC3-h_rG426hqg</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Krishna R, Kamal</creator><creator>Kochupillai, Jayaraj</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1704-1437</orcidid></search><sort><creationdate>20200701</creationdate><title>A new formulation for fluid–structure interaction in pipes conveying fluids using Mindlin shell element and 3-D acoustic fluid element</title><author>Krishna R, Kamal ; Kochupillai, Jayaraj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8c1406131b196fffaed548c2d2244ba2521b3c62b1432e6b8f9bd2413b1fc3943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary conditions</topic><topic>Computational fluid dynamics</topic><topic>Contact pressure</topic><topic>Conveying</topic><topic>Deformation effects</topic><topic>Energy transfer</topic><topic>Engineering</topic><topic>Equations of motion</topic><topic>Flexible pipes</topic><topic>Fluid-structure interaction</topic><topic>Fluids</topic><topic>Measuring instruments</topic><topic>Mechanical Engineering</topic><topic>Mindlin plates</topic><topic>Resonant frequencies</topic><topic>Rotary inertia</topic><topic>Scalars</topic><topic>Scanning</topic><topic>Shear deformation</topic><topic>Shearing</topic><topic>Technical Paper</topic><topic>Tubes</topic><topic>Vibration measurement</topic><topic>Wave equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Krishna R, Kamal</creatorcontrib><creatorcontrib>Kochupillai, Jayaraj</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishna R, Kamal</au><au>Kochupillai, Jayaraj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new formulation for fluid–structure interaction in pipes conveying fluids using Mindlin shell element and 3-D acoustic fluid element</atitle><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle><stitle>J Braz. Soc. Mech. Sci. Eng</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>42</volume><issue>7</issue><artnum>388</artnum><issn>1678-5878</issn><eissn>1806-3691</eissn><abstract>This paper explores the vibratory behavior of fluid-conveying flexible shells using a new generic finite element formulation employing the first-order shear deformation theory. The flexible tube conveying fluid is modeled using eight-noded curved Mindlin shell elements, which incorporate the effects such as shearing deformations and rotary inertia. The fluid is modeled using twenty noded isoparametric acoustic fluid elements. Solving the wave equation for an abstract scalar field velocity potential, we get the equations of motion for the fluid element. The energy transfer within the fluid and the shell is idealized with the pressure and velocity boundary conditions, which guarantees proper contact between the fluid and structure. The flexible tubes find various applications in medical as well as pharmaceutical industries. Flexible tubes demand minimal energy to excite. Hence, they can find applications in the flow measuring devices, which use vibration techniques. There is a difference in the fundamental frequencies of silicone tubes measured in the horizontal and vertical planes. This difference is due to the sagging of flexible pipes, which causes a beat phenomenon. A novel laser scanning technique is proposed to obtain the actual dimensions of flexible tubes when it sags due to gravity. This actual dimension is analyzed using the new formulation developed. The numerical results, with the actual dimensions measured using the scanning technique, give a good match with the experimental results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40430-020-02477-1</doi><orcidid>https://orcid.org/0000-0002-1704-1437</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1678-5878
ispartof Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020-07, Vol.42 (7), Article 388
issn 1678-5878
1806-3691
language eng
recordid cdi_proquest_journals_2419869920
source SpringerLink_现刊
subjects Boundary conditions
Computational fluid dynamics
Contact pressure
Conveying
Deformation effects
Energy transfer
Engineering
Equations of motion
Flexible pipes
Fluid-structure interaction
Fluids
Measuring instruments
Mechanical Engineering
Mindlin plates
Resonant frequencies
Rotary inertia
Scalars
Scanning
Shear deformation
Shearing
Technical Paper
Tubes
Vibration measurement
Wave equations
title A new formulation for fluid–structure interaction in pipes conveying fluids using Mindlin shell element and 3-D acoustic fluid element
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A16%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20formulation%20for%20fluid%E2%80%93structure%20interaction%20in%20pipes%20conveying%20fluids%20using%20Mindlin%20shell%20element%20and%203-D%20acoustic%20fluid%20element&rft.jtitle=Journal%20of%20the%20Brazilian%20Society%20of%20Mechanical%20Sciences%20and%20Engineering&rft.au=Krishna%20R,%20Kamal&rft.date=2020-07-01&rft.volume=42&rft.issue=7&rft.artnum=388&rft.issn=1678-5878&rft.eissn=1806-3691&rft_id=info:doi/10.1007/s40430-020-02477-1&rft_dat=%3Cproquest_cross%3E2419869920%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419869920&rft_id=info:pmid/&rfr_iscdi=true