Classification of the congruence classes of An5 (n ⩾ 6) with 2-torsion free homology

In this paper, we classify the congruence classes of F n ( 2 ) 5 -polyhedra, i.e., ( n − 1)-connected, at most ( n + 5)-dimensional polyhedra with 2-torsion free homology. The proof relies on the matrix problem technique which was developed in the classification of representations of algebras and ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2020, Vol.63 (7), p.1409-1428
Hauptverfasser: Zhu, Zhongjian, Pan, Jianzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1428
container_issue 7
container_start_page 1409
container_title Science China. Mathematics
container_volume 63
creator Zhu, Zhongjian
Pan, Jianzhong
description In this paper, we classify the congruence classes of F n ( 2 ) 5 -polyhedra, i.e., ( n − 1)-connected, at most ( n + 5)-dimensional polyhedra with 2-torsion free homology. The proof relies on the matrix problem technique which was developed in the classification of representations of algebras and applied to the homotopy theory by Baues and Drozd (1999).
doi_str_mv 10.1007/s11425-018-9413-y
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2419869914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419869914</sourcerecordid><originalsourceid>FETCH-LOGICAL-p141y-ee5bd7d69d277aaeac5348a04514945e15cba9737a4d256cf7908e91858a008f3</originalsourceid><addsrcrecordid>eNpFkM1KAzEQgIMoWLQP4C3gRQ_RTH42ybEU_6DgRb2GdDfbbqlJTbbIPpIv4cP4JGap4BxmBuabGfgQugB6A5Sq2wwgmCQUNDECOBmO0AR0ZUhJ7Lj0lRJEMc1P0TTnDS3BDRWKT9DbfOty7tqudn0XA44t7tce1zGs0t6HurQj4PM4mQWJrwL--frG1TX-7Po1ZqSPKY-bbfIer-N73MbVcI5OWrfNfvpXz9Dr_d3L_JEsnh-e5rMF2YGAgXgvl41qKtMwpZzzrpZcaEeFBGGE9CDrpTOKKycaJqu6VYZqb0DLAlHd8jN0ebi7S_Fj73NvN3GfQnlpmQBTHBgQhWIHKu9SF1Y-_VNA7ajQHhTaotCOCu3AfwEVrWPx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419869914</pqid></control><display><type>article</type><title>Classification of the congruence classes of An5 (n ⩾ 6) with 2-torsion free homology</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Zhu, Zhongjian ; Pan, Jianzhong</creator><creatorcontrib>Zhu, Zhongjian ; Pan, Jianzhong</creatorcontrib><description>In this paper, we classify the congruence classes of F n ( 2 ) 5 -polyhedra, i.e., ( n − 1)-connected, at most ( n + 5)-dimensional polyhedra with 2-torsion free homology. The proof relies on the matrix problem technique which was developed in the classification of representations of algebras and applied to the homotopy theory by Baues and Drozd (1999).</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-018-9413-y</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Applications of Mathematics ; Classification ; Homology ; Homotopy theory ; Mathematics ; Mathematics and Statistics ; Polyhedra</subject><ispartof>Science China. Mathematics, 2020, Vol.63 (7), p.1409-1428</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p141y-ee5bd7d69d277aaeac5348a04514945e15cba9737a4d256cf7908e91858a008f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-018-9413-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-018-9413-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhu, Zhongjian</creatorcontrib><creatorcontrib>Pan, Jianzhong</creatorcontrib><title>Classification of the congruence classes of An5 (n ⩾ 6) with 2-torsion free homology</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><description>In this paper, we classify the congruence classes of F n ( 2 ) 5 -polyhedra, i.e., ( n − 1)-connected, at most ( n + 5)-dimensional polyhedra with 2-torsion free homology. The proof relies on the matrix problem technique which was developed in the classification of representations of algebras and applied to the homotopy theory by Baues and Drozd (1999).</description><subject>Applications of Mathematics</subject><subject>Classification</subject><subject>Homology</subject><subject>Homotopy theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polyhedra</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkM1KAzEQgIMoWLQP4C3gRQ_RTH42ybEU_6DgRb2GdDfbbqlJTbbIPpIv4cP4JGap4BxmBuabGfgQugB6A5Sq2wwgmCQUNDECOBmO0AR0ZUhJ7Lj0lRJEMc1P0TTnDS3BDRWKT9DbfOty7tqudn0XA44t7tce1zGs0t6HurQj4PM4mQWJrwL--frG1TX-7Po1ZqSPKY-bbfIer-N73MbVcI5OWrfNfvpXz9Dr_d3L_JEsnh-e5rMF2YGAgXgvl41qKtMwpZzzrpZcaEeFBGGE9CDrpTOKKycaJqu6VYZqb0DLAlHd8jN0ebi7S_Fj73NvN3GfQnlpmQBTHBgQhWIHKu9SF1Y-_VNA7ajQHhTaotCOCu3AfwEVrWPx</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhu, Zhongjian</creator><creator>Pan, Jianzhong</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2020</creationdate><title>Classification of the congruence classes of An5 (n ⩾ 6) with 2-torsion free homology</title><author>Zhu, Zhongjian ; Pan, Jianzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p141y-ee5bd7d69d277aaeac5348a04514945e15cba9737a4d256cf7908e91858a008f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Classification</topic><topic>Homology</topic><topic>Homotopy theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polyhedra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Zhongjian</creatorcontrib><creatorcontrib>Pan, Jianzhong</creatorcontrib><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Zhongjian</au><au>Pan, Jianzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of the congruence classes of An5 (n ⩾ 6) with 2-torsion free homology</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><date>2020</date><risdate>2020</risdate><volume>63</volume><issue>7</issue><spage>1409</spage><epage>1428</epage><pages>1409-1428</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>In this paper, we classify the congruence classes of F n ( 2 ) 5 -polyhedra, i.e., ( n − 1)-connected, at most ( n + 5)-dimensional polyhedra with 2-torsion free homology. The proof relies on the matrix problem technique which was developed in the classification of representations of algebras and applied to the homotopy theory by Baues and Drozd (1999).</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-018-9413-y</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7283
ispartof Science China. Mathematics, 2020, Vol.63 (7), p.1409-1428
issn 1674-7283
1869-1862
language eng
recordid cdi_proquest_journals_2419869914
source SpringerLink Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Classification
Homology
Homotopy theory
Mathematics
Mathematics and Statistics
Polyhedra
title Classification of the congruence classes of An5 (n ⩾ 6) with 2-torsion free homology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A29%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20the%20congruence%20classes%20of%20An5%20(n%20%E2%A9%BE%206)%20with%202-torsion%20free%20homology&rft.jtitle=Science%20China.%20Mathematics&rft.au=Zhu,%20Zhongjian&rft.date=2020&rft.volume=63&rft.issue=7&rft.spage=1409&rft.epage=1428&rft.pages=1409-1428&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-018-9413-y&rft_dat=%3Cproquest_sprin%3E2419869914%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419869914&rft_id=info:pmid/&rfr_iscdi=true