Classification of the congruence classes of An5 (n ⩾ 6) with 2-torsion free homology
In this paper, we classify the congruence classes of F n ( 2 ) 5 -polyhedra, i.e., ( n − 1)-connected, at most ( n + 5)-dimensional polyhedra with 2-torsion free homology. The proof relies on the matrix problem technique which was developed in the classification of representations of algebras and ap...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2020, Vol.63 (7), p.1409-1428 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1428 |
---|---|
container_issue | 7 |
container_start_page | 1409 |
container_title | Science China. Mathematics |
container_volume | 63 |
creator | Zhu, Zhongjian Pan, Jianzhong |
description | In this paper, we classify the congruence classes of
F
n
(
2
)
5
-polyhedra, i.e., (
n
− 1)-connected, at most (
n
+ 5)-dimensional polyhedra with 2-torsion free homology. The proof relies on the matrix problem technique which was developed in the classification of representations of algebras and applied to the homotopy theory by Baues and Drozd (1999). |
doi_str_mv | 10.1007/s11425-018-9413-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2419869914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419869914</sourcerecordid><originalsourceid>FETCH-LOGICAL-p141y-ee5bd7d69d277aaeac5348a04514945e15cba9737a4d256cf7908e91858a008f3</originalsourceid><addsrcrecordid>eNpFkM1KAzEQgIMoWLQP4C3gRQ_RTH42ybEU_6DgRb2GdDfbbqlJTbbIPpIv4cP4JGap4BxmBuabGfgQugB6A5Sq2wwgmCQUNDECOBmO0AR0ZUhJ7Lj0lRJEMc1P0TTnDS3BDRWKT9DbfOty7tqudn0XA44t7tce1zGs0t6HurQj4PM4mQWJrwL--frG1TX-7Po1ZqSPKY-bbfIer-N73MbVcI5OWrfNfvpXz9Dr_d3L_JEsnh-e5rMF2YGAgXgvl41qKtMwpZzzrpZcaEeFBGGE9CDrpTOKKycaJqu6VYZqb0DLAlHd8jN0ebi7S_Fj73NvN3GfQnlpmQBTHBgQhWIHKu9SF1Y-_VNA7ajQHhTaotCOCu3AfwEVrWPx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419869914</pqid></control><display><type>article</type><title>Classification of the congruence classes of An5 (n ⩾ 6) with 2-torsion free homology</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Zhu, Zhongjian ; Pan, Jianzhong</creator><creatorcontrib>Zhu, Zhongjian ; Pan, Jianzhong</creatorcontrib><description>In this paper, we classify the congruence classes of
F
n
(
2
)
5
-polyhedra, i.e., (
n
− 1)-connected, at most (
n
+ 5)-dimensional polyhedra with 2-torsion free homology. The proof relies on the matrix problem technique which was developed in the classification of representations of algebras and applied to the homotopy theory by Baues and Drozd (1999).</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-018-9413-y</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Applications of Mathematics ; Classification ; Homology ; Homotopy theory ; Mathematics ; Mathematics and Statistics ; Polyhedra</subject><ispartof>Science China. Mathematics, 2020, Vol.63 (7), p.1409-1428</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p141y-ee5bd7d69d277aaeac5348a04514945e15cba9737a4d256cf7908e91858a008f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-018-9413-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-018-9413-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhu, Zhongjian</creatorcontrib><creatorcontrib>Pan, Jianzhong</creatorcontrib><title>Classification of the congruence classes of An5 (n ⩾ 6) with 2-torsion free homology</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><description>In this paper, we classify the congruence classes of
F
n
(
2
)
5
-polyhedra, i.e., (
n
− 1)-connected, at most (
n
+ 5)-dimensional polyhedra with 2-torsion free homology. The proof relies on the matrix problem technique which was developed in the classification of representations of algebras and applied to the homotopy theory by Baues and Drozd (1999).</description><subject>Applications of Mathematics</subject><subject>Classification</subject><subject>Homology</subject><subject>Homotopy theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polyhedra</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkM1KAzEQgIMoWLQP4C3gRQ_RTH42ybEU_6DgRb2GdDfbbqlJTbbIPpIv4cP4JGap4BxmBuabGfgQugB6A5Sq2wwgmCQUNDECOBmO0AR0ZUhJ7Lj0lRJEMc1P0TTnDS3BDRWKT9DbfOty7tqudn0XA44t7tce1zGs0t6HurQj4PM4mQWJrwL--frG1TX-7Po1ZqSPKY-bbfIer-N73MbVcI5OWrfNfvpXz9Dr_d3L_JEsnh-e5rMF2YGAgXgvl41qKtMwpZzzrpZcaEeFBGGE9CDrpTOKKycaJqu6VYZqb0DLAlHd8jN0ebi7S_Fj73NvN3GfQnlpmQBTHBgQhWIHKu9SF1Y-_VNA7ajQHhTaotCOCu3AfwEVrWPx</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhu, Zhongjian</creator><creator>Pan, Jianzhong</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2020</creationdate><title>Classification of the congruence classes of An5 (n ⩾ 6) with 2-torsion free homology</title><author>Zhu, Zhongjian ; Pan, Jianzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p141y-ee5bd7d69d277aaeac5348a04514945e15cba9737a4d256cf7908e91858a008f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Classification</topic><topic>Homology</topic><topic>Homotopy theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polyhedra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Zhongjian</creatorcontrib><creatorcontrib>Pan, Jianzhong</creatorcontrib><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Zhongjian</au><au>Pan, Jianzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of the congruence classes of An5 (n ⩾ 6) with 2-torsion free homology</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><date>2020</date><risdate>2020</risdate><volume>63</volume><issue>7</issue><spage>1409</spage><epage>1428</epage><pages>1409-1428</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>In this paper, we classify the congruence classes of
F
n
(
2
)
5
-polyhedra, i.e., (
n
− 1)-connected, at most (
n
+ 5)-dimensional polyhedra with 2-torsion free homology. The proof relies on the matrix problem technique which was developed in the classification of representations of algebras and applied to the homotopy theory by Baues and Drozd (1999).</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-018-9413-y</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7283 |
ispartof | Science China. Mathematics, 2020, Vol.63 (7), p.1409-1428 |
issn | 1674-7283 1869-1862 |
language | eng |
recordid | cdi_proquest_journals_2419869914 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics Classification Homology Homotopy theory Mathematics Mathematics and Statistics Polyhedra |
title | Classification of the congruence classes of An5 (n ⩾ 6) with 2-torsion free homology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A29%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20the%20congruence%20classes%20of%20An5%20(n%20%E2%A9%BE%206)%20with%202-torsion%20free%20homology&rft.jtitle=Science%20China.%20Mathematics&rft.au=Zhu,%20Zhongjian&rft.date=2020&rft.volume=63&rft.issue=7&rft.spage=1409&rft.epage=1428&rft.pages=1409-1428&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-018-9413-y&rft_dat=%3Cproquest_sprin%3E2419869914%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419869914&rft_id=info:pmid/&rfr_iscdi=true |