Verma modules for rank two Heisenberg-Virasoro algebra
Let ⪯ be a compatible total order on the additive group ℤ 2 , and L be the rank two Heisenberg-Virasoro algebra. For any c = ( c1, c2, c3, c4 ) ∈ ℂ 4 , we define a ℤ 2 -graded Verma module M ( c , ⪯) for L . A necessary and sufficient condition for M ( c , ⪯) to be irreducible is provided. Moreover,...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2020-07, Vol.63 (7), p.1259-1270 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1270 |
---|---|
container_issue | 7 |
container_start_page | 1259 |
container_title | Science China. Mathematics |
container_volume | 63 |
creator | Li, Zhiqiang Tan, Shaobin |
description | Let ⪯ be a compatible total order on the additive group ℤ
2
, and
L
be the rank two Heisenberg-Virasoro algebra. For any
c
= (
c1, c2, c3, c4
)
∈
ℂ
4
, we define a ℤ
2
-graded Verma module
M
(
c
, ⪯) for
L
. A necessary and sufficient condition for
M
(
c
, ⪯) to be irreducible is provided. Moreover, the maximal ℤ2-graded submodules of
M
(
c
, ⪯) are characterized when
M
(
c
, ⪯) is reducible. |
doi_str_mv | 10.1007/s11425-018-9412-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2419869702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419869702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5d1571c37af6d82a4918026592d980d13213c4de2b0587ace4db26994c0c6f113</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWLQfwNuC52gmyebPUYpaoeBFew3ZJFta202dtIjf3pQVPDmHmTm894b5EXID7A4Y0_cFQPKWMjDUSuBUnpEJGGVpbfy87kpLqrkRl2RayobVEpZJLSZELRPufLPL8bhNpekzNuiHj-bwlZt5Wpc0dAlXdLlGXzLmxm9XqUN_TS56vy1p-juvyPvT49tsThevzy-zhwUNAtSBthFaDUFo36touJcWDOOqtTxawyIIDiLImHjHWqN9SDJ2XFkrAwuqBxBX5HbM3WP-PKZycJt8xKGedFyCrT9qxqsKRlXAXAqm3u1xvfP47YC5EyE3EnKVkDsRcrJ6-OgpVTusEv4l_2_6Af0UZmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419869702</pqid></control><display><type>article</type><title>Verma modules for rank two Heisenberg-Virasoro algebra</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Li, Zhiqiang ; Tan, Shaobin</creator><creatorcontrib>Li, Zhiqiang ; Tan, Shaobin</creatorcontrib><description>Let ⪯ be a compatible total order on the additive group ℤ
2
, and
L
be the rank two Heisenberg-Virasoro algebra. For any
c
= (
c1, c2, c3, c4
)
∈
ℂ
4
, we define a ℤ
2
-graded Verma module
M
(
c
, ⪯) for
L
. A necessary and sufficient condition for
M
(
c
, ⪯) to be irreducible is provided. Moreover, the maximal ℤ2-graded submodules of
M
(
c
, ⪯) are characterized when
M
(
c
, ⪯) is reducible.</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-018-9412-4</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Applications of Mathematics ; Mathematics ; Mathematics and Statistics ; Modules</subject><ispartof>Science China. Mathematics, 2020-07, Vol.63 (7), p.1259-1270</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-5d1571c37af6d82a4918026592d980d13213c4de2b0587ace4db26994c0c6f113</citedby><cites>FETCH-LOGICAL-c316t-5d1571c37af6d82a4918026592d980d13213c4de2b0587ace4db26994c0c6f113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-018-9412-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-018-9412-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Tan, Shaobin</creatorcontrib><title>Verma modules for rank two Heisenberg-Virasoro algebra</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><description>Let ⪯ be a compatible total order on the additive group ℤ
2
, and
L
be the rank two Heisenberg-Virasoro algebra. For any
c
= (
c1, c2, c3, c4
)
∈
ℂ
4
, we define a ℤ
2
-graded Verma module
M
(
c
, ⪯) for
L
. A necessary and sufficient condition for
M
(
c
, ⪯) to be irreducible is provided. Moreover, the maximal ℤ2-graded submodules of
M
(
c
, ⪯) are characterized when
M
(
c
, ⪯) is reducible.</description><subject>Applications of Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modules</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWLQfwNuC52gmyebPUYpaoeBFew3ZJFta202dtIjf3pQVPDmHmTm894b5EXID7A4Y0_cFQPKWMjDUSuBUnpEJGGVpbfy87kpLqrkRl2RayobVEpZJLSZELRPufLPL8bhNpekzNuiHj-bwlZt5Wpc0dAlXdLlGXzLmxm9XqUN_TS56vy1p-juvyPvT49tsThevzy-zhwUNAtSBthFaDUFo36touJcWDOOqtTxawyIIDiLImHjHWqN9SDJ2XFkrAwuqBxBX5HbM3WP-PKZycJt8xKGedFyCrT9qxqsKRlXAXAqm3u1xvfP47YC5EyE3EnKVkDsRcrJ6-OgpVTusEv4l_2_6Af0UZmw</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Li, Zhiqiang</creator><creator>Tan, Shaobin</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200701</creationdate><title>Verma modules for rank two Heisenberg-Virasoro algebra</title><author>Li, Zhiqiang ; Tan, Shaobin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5d1571c37af6d82a4918026592d980d13213c4de2b0587ace4db26994c0c6f113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Tan, Shaobin</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhiqiang</au><au>Tan, Shaobin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Verma modules for rank two Heisenberg-Virasoro algebra</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>63</volume><issue>7</issue><spage>1259</spage><epage>1270</epage><pages>1259-1270</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>Let ⪯ be a compatible total order on the additive group ℤ
2
, and
L
be the rank two Heisenberg-Virasoro algebra. For any
c
= (
c1, c2, c3, c4
)
∈
ℂ
4
, we define a ℤ
2
-graded Verma module
M
(
c
, ⪯) for
L
. A necessary and sufficient condition for
M
(
c
, ⪯) to be irreducible is provided. Moreover, the maximal ℤ2-graded submodules of
M
(
c
, ⪯) are characterized when
M
(
c
, ⪯) is reducible.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-018-9412-4</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7283 |
ispartof | Science China. Mathematics, 2020-07, Vol.63 (7), p.1259-1270 |
issn | 1674-7283 1869-1862 |
language | eng |
recordid | cdi_proquest_journals_2419869702 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics Mathematics Mathematics and Statistics Modules |
title | Verma modules for rank two Heisenberg-Virasoro algebra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Verma%20modules%20for%20rank%20two%20Heisenberg-Virasoro%20algebra&rft.jtitle=Science%20China.%20Mathematics&rft.au=Li,%20Zhiqiang&rft.date=2020-07-01&rft.volume=63&rft.issue=7&rft.spage=1259&rft.epage=1270&rft.pages=1259-1270&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-018-9412-4&rft_dat=%3Cproquest_cross%3E2419869702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419869702&rft_id=info:pmid/&rfr_iscdi=true |