FreeFEM++ code for reaction-diffusion equation–based topology optimization: for high-resolution boundary representation using adaptive mesh refinement

In this article, we present a simple FreeFEM++ code to represent high-resolution boundaries of the optimal shape using reaction-diffusion equation–based topology optimization and adaptive mesh refinement. The design algorithm is divided into two parts to achieve a high quality of the boundary. In th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2020-07, Vol.62 (1), p.439-455
Hauptverfasser: Kim, Cheolwoong, Jung, Mingook, Yamada, Takayuki, Nishiwaki, Shinji, Yoo, Jeonghoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 455
container_issue 1
container_start_page 439
container_title Structural and multidisciplinary optimization
container_volume 62
creator Kim, Cheolwoong
Jung, Mingook
Yamada, Takayuki
Nishiwaki, Shinji
Yoo, Jeonghoon
description In this article, we present a simple FreeFEM++ code to represent high-resolution boundaries of the optimal shape using reaction-diffusion equation–based topology optimization and adaptive mesh refinement. The design algorithm is divided into two parts to achieve a high quality of the boundary. In the first part, loop 1, the ordinary method for a reaction-diffusion equation–based topology optimization, is applied to obtain the optimal shape. In the second part, loop 2, a modified reaction-diffusion equation combined with a double well potential, is employed as an optimizer and the adaptive mesh refinement is used with a gradual decrease of the diffusion coefficient. Because the code is intended for educational purposes, this paper provides background knowledge for understanding of the finite element method and topology optimization. Various numerical examples are discussed to confirm the robustness of the proposed design algorithm. The corresponding code may be downloaded from the website http://ssd.yonsei.ac.kr .
doi_str_mv 10.1007/s00158-020-02498-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2419557670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419557670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3003-87ef147f7f1e42bb031264849f1d85908a5087ced8f448c151f75a256917481c3</originalsourceid><addsrcrecordid>eNp9kbFOwzAQhiMEEqXwAkyWGKvAObFrhw1VLSAVsYDEZrnJuU3VxqmdIJWJd2Dh-XgS3AbBxmD5dP7-_3z6o-icwiUFEFcegHIZQwLhsEzG6UHUo0PKY8qkPPytxctxdOL9EgAksKwXfU4c4mT8MBiQ3BZIjHXEoc6b0lZxURrT-lAR3LR61_p6_5hpjwVpbG1Xdr4ltm7Kdfm2f73eyxflfBE79HbV7ppkZtuq0G4bfOvQxqrZwyQ4V3OiCx0cXpGs0S8CYsoK14E5jY6MXnk8-7n70fNk_DS6i6ePt_ejm2mcpwBpLAWasJYRhiJLZjNIaTJkkmWGFpJnIDUHKXIspGFM5pRTI7hO-DCjgkmap_3oovOtnd206Bu1tK2rwkiVMJpxLoYCApV0VO6s9-GXqnblOiylKKhdAqpLQIUE1D4BlQZR2ol8gKs5uj_rf1Tf9KqM6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419557670</pqid></control><display><type>article</type><title>FreeFEM++ code for reaction-diffusion equation–based topology optimization: for high-resolution boundary representation using adaptive mesh refinement</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kim, Cheolwoong ; Jung, Mingook ; Yamada, Takayuki ; Nishiwaki, Shinji ; Yoo, Jeonghoon</creator><creatorcontrib>Kim, Cheolwoong ; Jung, Mingook ; Yamada, Takayuki ; Nishiwaki, Shinji ; Yoo, Jeonghoon</creatorcontrib><description>In this article, we present a simple FreeFEM++ code to represent high-resolution boundaries of the optimal shape using reaction-diffusion equation–based topology optimization and adaptive mesh refinement. The design algorithm is divided into two parts to achieve a high quality of the boundary. In the first part, loop 1, the ordinary method for a reaction-diffusion equation–based topology optimization, is applied to obtain the optimal shape. In the second part, loop 2, a modified reaction-diffusion equation combined with a double well potential, is employed as an optimizer and the adaptive mesh refinement is used with a gradual decrease of the diffusion coefficient. Because the code is intended for educational purposes, this paper provides background knowledge for understanding of the finite element method and topology optimization. Various numerical examples are discussed to confirm the robustness of the proposed design algorithm. The corresponding code may be downloaded from the website http://ssd.yonsei.ac.kr .</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-020-02498-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive algorithms ; Boundary representation ; Computational Mathematics and Numerical Analysis ; Diffusion ; Diffusion coefficient ; Educational Paper ; Engineering ; Engineering Design ; Finite element method ; Grid refinement (mathematics) ; High resolution ; Mathematical analysis ; Nonlinear programming ; Optimization ; Reaction-diffusion equations ; Robustness (mathematics) ; Theoretical and Applied Mechanics ; Topology optimization ; Websites</subject><ispartof>Structural and multidisciplinary optimization, 2020-07, Vol.62 (1), p.439-455</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3003-87ef147f7f1e42bb031264849f1d85908a5087ced8f448c151f75a256917481c3</citedby><cites>FETCH-LOGICAL-c3003-87ef147f7f1e42bb031264849f1d85908a5087ced8f448c151f75a256917481c3</cites><orcidid>0000-0002-1705-3374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-020-02498-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-020-02498-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Kim, Cheolwoong</creatorcontrib><creatorcontrib>Jung, Mingook</creatorcontrib><creatorcontrib>Yamada, Takayuki</creatorcontrib><creatorcontrib>Nishiwaki, Shinji</creatorcontrib><creatorcontrib>Yoo, Jeonghoon</creatorcontrib><title>FreeFEM++ code for reaction-diffusion equation–based topology optimization: for high-resolution boundary representation using adaptive mesh refinement</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>In this article, we present a simple FreeFEM++ code to represent high-resolution boundaries of the optimal shape using reaction-diffusion equation–based topology optimization and adaptive mesh refinement. The design algorithm is divided into two parts to achieve a high quality of the boundary. In the first part, loop 1, the ordinary method for a reaction-diffusion equation–based topology optimization, is applied to obtain the optimal shape. In the second part, loop 2, a modified reaction-diffusion equation combined with a double well potential, is employed as an optimizer and the adaptive mesh refinement is used with a gradual decrease of the diffusion coefficient. Because the code is intended for educational purposes, this paper provides background knowledge for understanding of the finite element method and topology optimization. Various numerical examples are discussed to confirm the robustness of the proposed design algorithm. The corresponding code may be downloaded from the website http://ssd.yonsei.ac.kr .</description><subject>Adaptive algorithms</subject><subject>Boundary representation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Educational Paper</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Finite element method</subject><subject>Grid refinement (mathematics)</subject><subject>High resolution</subject><subject>Mathematical analysis</subject><subject>Nonlinear programming</subject><subject>Optimization</subject><subject>Reaction-diffusion equations</subject><subject>Robustness (mathematics)</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology optimization</subject><subject>Websites</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kbFOwzAQhiMEEqXwAkyWGKvAObFrhw1VLSAVsYDEZrnJuU3VxqmdIJWJd2Dh-XgS3AbBxmD5dP7-_3z6o-icwiUFEFcegHIZQwLhsEzG6UHUo0PKY8qkPPytxctxdOL9EgAksKwXfU4c4mT8MBiQ3BZIjHXEoc6b0lZxURrT-lAR3LR61_p6_5hpjwVpbG1Xdr4ltm7Kdfm2f73eyxflfBE79HbV7ppkZtuq0G4bfOvQxqrZwyQ4V3OiCx0cXpGs0S8CYsoK14E5jY6MXnk8-7n70fNk_DS6i6ePt_ejm2mcpwBpLAWasJYRhiJLZjNIaTJkkmWGFpJnIDUHKXIspGFM5pRTI7hO-DCjgkmap_3oovOtnd206Bu1tK2rwkiVMJpxLoYCApV0VO6s9-GXqnblOiylKKhdAqpLQIUE1D4BlQZR2ol8gKs5uj_rf1Tf9KqM6Q</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Kim, Cheolwoong</creator><creator>Jung, Mingook</creator><creator>Yamada, Takayuki</creator><creator>Nishiwaki, Shinji</creator><creator>Yoo, Jeonghoon</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-1705-3374</orcidid></search><sort><creationdate>20200701</creationdate><title>FreeFEM++ code for reaction-diffusion equation–based topology optimization: for high-resolution boundary representation using adaptive mesh refinement</title><author>Kim, Cheolwoong ; Jung, Mingook ; Yamada, Takayuki ; Nishiwaki, Shinji ; Yoo, Jeonghoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3003-87ef147f7f1e42bb031264849f1d85908a5087ced8f448c151f75a256917481c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive algorithms</topic><topic>Boundary representation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Educational Paper</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Finite element method</topic><topic>Grid refinement (mathematics)</topic><topic>High resolution</topic><topic>Mathematical analysis</topic><topic>Nonlinear programming</topic><topic>Optimization</topic><topic>Reaction-diffusion equations</topic><topic>Robustness (mathematics)</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology optimization</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Cheolwoong</creatorcontrib><creatorcontrib>Jung, Mingook</creatorcontrib><creatorcontrib>Yamada, Takayuki</creatorcontrib><creatorcontrib>Nishiwaki, Shinji</creatorcontrib><creatorcontrib>Yoo, Jeonghoon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Cheolwoong</au><au>Jung, Mingook</au><au>Yamada, Takayuki</au><au>Nishiwaki, Shinji</au><au>Yoo, Jeonghoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FreeFEM++ code for reaction-diffusion equation–based topology optimization: for high-resolution boundary representation using adaptive mesh refinement</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>62</volume><issue>1</issue><spage>439</spage><epage>455</epage><pages>439-455</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>In this article, we present a simple FreeFEM++ code to represent high-resolution boundaries of the optimal shape using reaction-diffusion equation–based topology optimization and adaptive mesh refinement. The design algorithm is divided into two parts to achieve a high quality of the boundary. In the first part, loop 1, the ordinary method for a reaction-diffusion equation–based topology optimization, is applied to obtain the optimal shape. In the second part, loop 2, a modified reaction-diffusion equation combined with a double well potential, is employed as an optimizer and the adaptive mesh refinement is used with a gradual decrease of the diffusion coefficient. Because the code is intended for educational purposes, this paper provides background knowledge for understanding of the finite element method and topology optimization. Various numerical examples are discussed to confirm the robustness of the proposed design algorithm. The corresponding code may be downloaded from the website http://ssd.yonsei.ac.kr .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-020-02498-3</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1705-3374</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2020-07, Vol.62 (1), p.439-455
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2419557670
source SpringerLink Journals - AutoHoldings
subjects Adaptive algorithms
Boundary representation
Computational Mathematics and Numerical Analysis
Diffusion
Diffusion coefficient
Educational Paper
Engineering
Engineering Design
Finite element method
Grid refinement (mathematics)
High resolution
Mathematical analysis
Nonlinear programming
Optimization
Reaction-diffusion equations
Robustness (mathematics)
Theoretical and Applied Mechanics
Topology optimization
Websites
title FreeFEM++ code for reaction-diffusion equation–based topology optimization: for high-resolution boundary representation using adaptive mesh refinement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FreeFEM++%20code%20for%20reaction-diffusion%20equation%E2%80%93based%20topology%20optimization:%20for%20high-resolution%20boundary%20representation%20using%20adaptive%20mesh%20refinement&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Kim,%20Cheolwoong&rft.date=2020-07-01&rft.volume=62&rft.issue=1&rft.spage=439&rft.epage=455&rft.pages=439-455&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-020-02498-3&rft_dat=%3Cproquest_cross%3E2419557670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419557670&rft_id=info:pmid/&rfr_iscdi=true