Low-Temperature Nitrocarburizing of Austenitic Stainless Steel for Combat Corrosion in H2S Environments
The time-dependent experiment was performed to investigate the corrosion behavior of low-temperature liquid nitrocarburized (LNC) 304 austenitic stainless steel in wet H 2 S environments. Characteristics of H 2 S corrosion products, as well as localized corrosion behavior, were investigated using X-...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2020-08, Vol.51 (8), p.4242-4256 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4256 |
---|---|
container_issue | 8 |
container_start_page | 4242 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 51 |
creator | Li, Longyi Wang, Jun Tang, Zhenghua Yan, Jing Fan, Hongyuan Zeng, Bo Li, Xiaoying Dong, Hanshan |
description | The time-dependent experiment was performed to investigate the corrosion behavior of low-temperature liquid nitrocarburized (LNC) 304 austenitic stainless steel in wet H
2
S environments. Characteristics of H
2
S corrosion products, as well as localized corrosion behavior, were investigated using X-ray diffraction (XRD), scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), and optical profilometry. The results revealed that the untreated steels, of which the H
2
S corrosion product layer on the untreated surface thickened but displayed a layered defect structure as the corrosion proceeded, had a higher weight loss than the LNC. Energy-dispersive spectroscopy (EDS) served to reveal the relationship between corrosion behavior and the content of sulfur, chromium, and other elements, and the valences of these elements were illustrated by XPS. The surface morphology after removing corrosion products showed that the presence of nitrocarburized S phase could prevent general corrosion and inhibit pit propagation. |
doi_str_mv | 10.1007/s11661-020-05802-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2419555329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419555329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a4c1ea638a10615f25401945245e78a99b0e285494ba8595a5753d5ce87881243</originalsourceid><addsrcrecordid>eNqNkE1r3DAQhk1JoPn6Az0JeixK9TW2dAwmzRaW9JDkLGRnvCjsSltJbkh_fbR1aW4lp5nD845ePU3zibNLzlj3NXPetpwywSgDzQRVH5oTDkpSbhQ7qjvrJIVWyI_Nac5PjDFuZHvSbNbxmd7jbo_JlTkhufUlxdGlYU7-tw8bEidyNeeCwRc_krvifNhiznVD3JIpJtLH3eBKHSnF7GMgPpCVuCPX4ZdPMewwlHzeHE9um_Hi7zxrHr5d3_cruv5x872_WtNRclOoUyNH10rtOGs5TAJULapAKMBOO2MGhkKDMmpwGgw46EA-woi605oLJc-az8vdfYo_Z8zFPsU5hfqkFYobAJDCVEos1Fgb54ST3Se_c-nFcmYPQu0i1Fah9o9Qezj9ZQk94xCnPHoMI_4LVqMglZIdsIPcSuv3070vrlRzfZxDqVG5RHPFwwbT2x_-U-8VCjaYpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419555329</pqid></control><display><type>article</type><title>Low-Temperature Nitrocarburizing of Austenitic Stainless Steel for Combat Corrosion in H2S Environments</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Li, Longyi ; Wang, Jun ; Tang, Zhenghua ; Yan, Jing ; Fan, Hongyuan ; Zeng, Bo ; Li, Xiaoying ; Dong, Hanshan</creator><creatorcontrib>Li, Longyi ; Wang, Jun ; Tang, Zhenghua ; Yan, Jing ; Fan, Hongyuan ; Zeng, Bo ; Li, Xiaoying ; Dong, Hanshan</creatorcontrib><description>The time-dependent experiment was performed to investigate the corrosion behavior of low-temperature liquid nitrocarburized (LNC) 304 austenitic stainless steel in wet H
2
S environments. Characteristics of H
2
S corrosion products, as well as localized corrosion behavior, were investigated using X-ray diffraction (XRD), scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), and optical profilometry. The results revealed that the untreated steels, of which the H
2
S corrosion product layer on the untreated surface thickened but displayed a layered defect structure as the corrosion proceeded, had a higher weight loss than the LNC. Energy-dispersive spectroscopy (EDS) served to reveal the relationship between corrosion behavior and the content of sulfur, chromium, and other elements, and the valences of these elements were illustrated by XPS. The surface morphology after removing corrosion products showed that the presence of nitrocarburized S phase could prevent general corrosion and inhibit pit propagation.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-020-05802-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Austenitic stainless steels ; Carbonitriding ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chromium ; Corrosion ; Corrosion environments ; Corrosion products ; Hydrogen sulfide ; Localized corrosion ; Low temperature ; Materials Science ; Materials Science, Multidisciplinary ; Metallic Materials ; Metallurgy & Metallurgical Engineering ; Morphology ; Nanotechnology ; Photoelectrons ; Science & Technology ; Spectrum analysis ; Stainless steel ; Structural Materials ; Surfaces and Interfaces ; Technology ; Thin Films ; Time dependence ; Uniform attack (corrosion) ; Weight loss ; X ray photoelectron spectroscopy</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2020-08, Vol.51 (8), p.4242-4256</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2020</rights><rights>The Minerals, Metals & Materials Society and ASM International 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000534437500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-a4c1ea638a10615f25401945245e78a99b0e285494ba8595a5753d5ce87881243</citedby><cites>FETCH-LOGICAL-c319t-a4c1ea638a10615f25401945245e78a99b0e285494ba8595a5753d5ce87881243</cites><orcidid>0000-0003-1244-0364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-020-05802-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-020-05802-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,28255,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Li, Longyi</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Tang, Zhenghua</creatorcontrib><creatorcontrib>Yan, Jing</creatorcontrib><creatorcontrib>Fan, Hongyuan</creatorcontrib><creatorcontrib>Zeng, Bo</creatorcontrib><creatorcontrib>Li, Xiaoying</creatorcontrib><creatorcontrib>Dong, Hanshan</creatorcontrib><title>Low-Temperature Nitrocarburizing of Austenitic Stainless Steel for Combat Corrosion in H2S Environments</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><addtitle>METALL MATER TRANS A</addtitle><description>The time-dependent experiment was performed to investigate the corrosion behavior of low-temperature liquid nitrocarburized (LNC) 304 austenitic stainless steel in wet H
2
S environments. Characteristics of H
2
S corrosion products, as well as localized corrosion behavior, were investigated using X-ray diffraction (XRD), scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), and optical profilometry. The results revealed that the untreated steels, of which the H
2
S corrosion product layer on the untreated surface thickened but displayed a layered defect structure as the corrosion proceeded, had a higher weight loss than the LNC. Energy-dispersive spectroscopy (EDS) served to reveal the relationship between corrosion behavior and the content of sulfur, chromium, and other elements, and the valences of these elements were illustrated by XPS. The surface morphology after removing corrosion products showed that the presence of nitrocarburized S phase could prevent general corrosion and inhibit pit propagation.</description><subject>Austenitic stainless steels</subject><subject>Carbonitriding</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Corrosion</subject><subject>Corrosion environments</subject><subject>Corrosion products</subject><subject>Hydrogen sulfide</subject><subject>Localized corrosion</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Metallic Materials</subject><subject>Metallurgy & Metallurgical Engineering</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Photoelectrons</subject><subject>Science & Technology</subject><subject>Spectrum analysis</subject><subject>Stainless steel</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Technology</subject><subject>Thin Films</subject><subject>Time dependence</subject><subject>Uniform attack (corrosion)</subject><subject>Weight loss</subject><subject>X ray photoelectron spectroscopy</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkE1r3DAQhk1JoPn6Az0JeixK9TW2dAwmzRaW9JDkLGRnvCjsSltJbkh_fbR1aW4lp5nD845ePU3zibNLzlj3NXPetpwywSgDzQRVH5oTDkpSbhQ7qjvrJIVWyI_Nac5PjDFuZHvSbNbxmd7jbo_JlTkhufUlxdGlYU7-tw8bEidyNeeCwRc_krvifNhiznVD3JIpJtLH3eBKHSnF7GMgPpCVuCPX4ZdPMewwlHzeHE9um_Hi7zxrHr5d3_cruv5x872_WtNRclOoUyNH10rtOGs5TAJULapAKMBOO2MGhkKDMmpwGgw46EA-woi605oLJc-az8vdfYo_Z8zFPsU5hfqkFYobAJDCVEos1Fgb54ST3Se_c-nFcmYPQu0i1Fah9o9Qezj9ZQk94xCnPHoMI_4LVqMglZIdsIPcSuv3070vrlRzfZxDqVG5RHPFwwbT2x_-U-8VCjaYpQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Li, Longyi</creator><creator>Wang, Jun</creator><creator>Tang, Zhenghua</creator><creator>Yan, Jing</creator><creator>Fan, Hongyuan</creator><creator>Zeng, Bo</creator><creator>Li, Xiaoying</creator><creator>Dong, Hanshan</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-1244-0364</orcidid></search><sort><creationdate>20200801</creationdate><title>Low-Temperature Nitrocarburizing of Austenitic Stainless Steel for Combat Corrosion in H2S Environments</title><author>Li, Longyi ; Wang, Jun ; Tang, Zhenghua ; Yan, Jing ; Fan, Hongyuan ; Zeng, Bo ; Li, Xiaoying ; Dong, Hanshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a4c1ea638a10615f25401945245e78a99b0e285494ba8595a5753d5ce87881243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Austenitic stainless steels</topic><topic>Carbonitriding</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Corrosion</topic><topic>Corrosion environments</topic><topic>Corrosion products</topic><topic>Hydrogen sulfide</topic><topic>Localized corrosion</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Metallic Materials</topic><topic>Metallurgy & Metallurgical Engineering</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Photoelectrons</topic><topic>Science & Technology</topic><topic>Spectrum analysis</topic><topic>Stainless steel</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Technology</topic><topic>Thin Films</topic><topic>Time dependence</topic><topic>Uniform attack (corrosion)</topic><topic>Weight loss</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Longyi</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Tang, Zhenghua</creatorcontrib><creatorcontrib>Yan, Jing</creatorcontrib><creatorcontrib>Fan, Hongyuan</creatorcontrib><creatorcontrib>Zeng, Bo</creatorcontrib><creatorcontrib>Li, Xiaoying</creatorcontrib><creatorcontrib>Dong, Hanshan</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Longyi</au><au>Wang, Jun</au><au>Tang, Zhenghua</au><au>Yan, Jing</au><au>Fan, Hongyuan</au><au>Zeng, Bo</au><au>Li, Xiaoying</au><au>Dong, Hanshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Temperature Nitrocarburizing of Austenitic Stainless Steel for Combat Corrosion in H2S Environments</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><stitle>METALL MATER TRANS A</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>51</volume><issue>8</issue><spage>4242</spage><epage>4256</epage><pages>4242-4256</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>The time-dependent experiment was performed to investigate the corrosion behavior of low-temperature liquid nitrocarburized (LNC) 304 austenitic stainless steel in wet H
2
S environments. Characteristics of H
2
S corrosion products, as well as localized corrosion behavior, were investigated using X-ray diffraction (XRD), scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), and optical profilometry. The results revealed that the untreated steels, of which the H
2
S corrosion product layer on the untreated surface thickened but displayed a layered defect structure as the corrosion proceeded, had a higher weight loss than the LNC. Energy-dispersive spectroscopy (EDS) served to reveal the relationship between corrosion behavior and the content of sulfur, chromium, and other elements, and the valences of these elements were illustrated by XPS. The surface morphology after removing corrosion products showed that the presence of nitrocarburized S phase could prevent general corrosion and inhibit pit propagation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-020-05802-4</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1244-0364</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2020-08, Vol.51 (8), p.4242-4256 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_2419555329 |
source | SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Austenitic stainless steels Carbonitriding Characterization and Evaluation of Materials Chemistry and Materials Science Chromium Corrosion Corrosion environments Corrosion products Hydrogen sulfide Localized corrosion Low temperature Materials Science Materials Science, Multidisciplinary Metallic Materials Metallurgy & Metallurgical Engineering Morphology Nanotechnology Photoelectrons Science & Technology Spectrum analysis Stainless steel Structural Materials Surfaces and Interfaces Technology Thin Films Time dependence Uniform attack (corrosion) Weight loss X ray photoelectron spectroscopy |
title | Low-Temperature Nitrocarburizing of Austenitic Stainless Steel for Combat Corrosion in H2S Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T15%3A52%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Temperature%20Nitrocarburizing%20of%20Austenitic%20Stainless%20Steel%20for%20Combat%20Corrosion%20in%20H2S%20Environments&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Li,%20Longyi&rft.date=2020-08-01&rft.volume=51&rft.issue=8&rft.spage=4242&rft.epage=4256&rft.pages=4242-4256&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-020-05802-4&rft_dat=%3Cproquest_cross%3E2419555329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419555329&rft_id=info:pmid/&rfr_iscdi=true |