Investigation of Hot Workability and Microstructure Evolution of VGCNFs-Reinforced Aluminum Matrix Composites
Isothermal compression experiments of vapor-grown carbon nanofiber (VGCNF)-reinforced aluminum matrix (VGCNF/Al) composites and pure aluminum (Al) were conducted at deformation temperatures from 573 K to 723 K and strain rates from 0.01 to 1 s −1 . It was found that the VGCNF/Al composites and pure...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2020-08, Vol.51 (8), p.4100-4112 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Isothermal compression experiments of vapor-grown carbon nanofiber (VGCNF)-reinforced aluminum matrix (VGCNF/Al) composites and pure aluminum (Al) were conducted at deformation temperatures from 573 K to 723 K and strain rates from 0.01 to 1 s
−1
. It was found that the VGCNF/Al composites and pure Al had depressed dynamic recrystallization percent in the high-power dissipation efficiency regions. Upon comparing the processing maps for different strains, it was found that the high-power dissipation efficiency regions of the VGCNF/Al composites and pure Al moved from the low strain rate region to the high strain rate region. The kernel average misorientation images showed that there were lots of low-angle grain boundaries in the high strain rate region. The low-angle grain boundaries did not have enough time to transform into high-angle grain boundaries, resulting in a depressed percentage of dynamic recrystallization. The addition of VGCNFs led to an increased low-angle grain boundary density. As a result, the phenomenon of high-power dissipation regions in the high strain rate regions correspond to the low percentage of dynamic recrystallization was more obvious. |
---|---|
ISSN: | 1073-5623 1543-1940 |
DOI: | 10.1007/s11661-020-05834-w |