Analysis of the Elevated Temperature Plastic Flow Response of Ti-6Al-4V Produced via the Hydrogen Sintering and Phase Transformation (HSPT) Process

An analysis pertaining to hot deformation behavior was conducted on two unique titanium alloy microstructures. Each product was manufactured from commercially available blended elemental Ti-6Al-4V powder, consolidated by sintering in vacuum or hydrogen. The initial microstructures produced by these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2020-08, Vol.51 (8), p.3956-3966
Hauptverfasser: Mann, Austin E., Sun, Pei, Kergaye, Omar, McNeill, Wyatt, Xia, Yang, Yousefiani, Ali, Fang, Z. Zak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3966
container_issue 8
container_start_page 3956
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 51
creator Mann, Austin E.
Sun, Pei
Kergaye, Omar
McNeill, Wyatt
Xia, Yang
Yousefiani, Ali
Fang, Z. Zak
description An analysis pertaining to hot deformation behavior was conducted on two unique titanium alloy microstructures. Each product was manufactured from commercially available blended elemental Ti-6Al-4V powder, consolidated by sintering in vacuum or hydrogen. The initial microstructures produced by these distinctive sintering atmospheres are represented by a coarse lamellar structure (produced by vacuum sintering) and a very fine lamellar structure [produced by Hydrogen Sintering Phase Transformation (HSPT)]. Performance of these materials was assessed by simulating representative titanium breakdown and conversion during thermomechanical processing through elevated temperature compression testing on a Gleeble® 3500 Hydrawedge II® system. Compression tests were performed on cylindrical specimens at sub and near-transus temperatures (850 °C, 900 °C, 950 °C, and 1000 °C) and at moderate strain rates of 0.01 and 0.10 s −1 . The very fine lamellar microstructure exhibited similar flow behavior compared to the coarse lamellar structure, although with a typically slightly higher peak stress and greater degree of flow softening. In addition, the microstructure produced by HSPT retained a fine, equiaxed structure upon deformation, making it highly suitable for powder-based thermomechanically processed titanium alloy products.
doi_str_mv 10.1007/s11661-020-05804-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2419554912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419554912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-1d55dc8ef30184807c2950dbe30774719a110bd3df6cc6ca221dc7e8352c31fa3</originalsourceid><addsrcrecordid>eNqNkM1u1DAURiMEEqXwAqwssQEhF187zs9yNGoZpEod0cA28tg3rauMPdhOq3kOXhhngmCH8OZ68Z1P956ieAvsAhirP0WAqgLKOKNMNqyk_FlxBrIUFNqSPc9_VgsqKy5eFq9ifGCMQSuqs-LnyqnxGG0kfiDpHsnliI8qoSEd7g8YVJoCku2oYrKaXI3-iXzFePAu4kx0llarkZbfyTZ4M-nMPVp1KtocTfB36MitdQmDdXdEOUO29yqjXVAuDj7sVbLekfeb2233Ye7QGOPr4sWgxohvfs_z4tvVZbfe0Oubz1_Wq2uqhawSBSOl0Q0OgkFTNqzWvJXM7FCwui5raBUA2xlhhkrrSivOwegaGyG5FjAocV68W3oPwf-YMKb-wU8h-4g9L6GVsmyB5xRfUjr4GAMO_SHYvQrHHlg_y-8X-X2W35_k9zP0cYGecOeHqC06jX_AbF8K4BmYH-R08__ptU0naWs_uZRRsaDxMCvG8PeGf6z3C4Vup_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419554912</pqid></control><display><type>article</type><title>Analysis of the Elevated Temperature Plastic Flow Response of Ti-6Al-4V Produced via the Hydrogen Sintering and Phase Transformation (HSPT) Process</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Mann, Austin E. ; Sun, Pei ; Kergaye, Omar ; McNeill, Wyatt ; Xia, Yang ; Yousefiani, Ali ; Fang, Z. Zak</creator><creatorcontrib>Mann, Austin E. ; Sun, Pei ; Kergaye, Omar ; McNeill, Wyatt ; Xia, Yang ; Yousefiani, Ali ; Fang, Z. Zak</creatorcontrib><description>An analysis pertaining to hot deformation behavior was conducted on two unique titanium alloy microstructures. Each product was manufactured from commercially available blended elemental Ti-6Al-4V powder, consolidated by sintering in vacuum or hydrogen. The initial microstructures produced by these distinctive sintering atmospheres are represented by a coarse lamellar structure (produced by vacuum sintering) and a very fine lamellar structure [produced by Hydrogen Sintering Phase Transformation (HSPT)]. Performance of these materials was assessed by simulating representative titanium breakdown and conversion during thermomechanical processing through elevated temperature compression testing on a Gleeble® 3500 Hydrawedge II® system. Compression tests were performed on cylindrical specimens at sub and near-transus temperatures (850 °C, 900 °C, 950 °C, and 1000 °C) and at moderate strain rates of 0.01 and 0.10 s −1 . The very fine lamellar microstructure exhibited similar flow behavior compared to the coarse lamellar structure, although with a typically slightly higher peak stress and greater degree of flow softening. In addition, the microstructure produced by HSPT retained a fine, equiaxed structure upon deformation, making it highly suitable for powder-based thermomechanically processed titanium alloy products.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-020-05804-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Compression tests ; Deformation ; Equiaxed structure ; High temperature ; Hydrogen ; Lamellar structure ; Materials Science ; Materials Science, Multidisciplinary ; Metallic Materials ; Metallurgy &amp; Metallurgical Engineering ; Microstructure ; Nanotechnology ; Phase transitions ; Plastic flow ; Science &amp; Technology ; Sintering ; Structural Materials ; Surfaces and Interfaces ; Technology ; Thermomechanical treatment ; Thin Films ; Titanium alloys ; Titanium base alloys ; Vacuum sintering</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2020-08, Vol.51 (8), p.3956-3966</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2020</rights><rights>The Minerals, Metals &amp; Materials Society and ASM International 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000531202000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c356t-1d55dc8ef30184807c2950dbe30774719a110bd3df6cc6ca221dc7e8352c31fa3</citedby><cites>FETCH-LOGICAL-c356t-1d55dc8ef30184807c2950dbe30774719a110bd3df6cc6ca221dc7e8352c31fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-020-05804-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-020-05804-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,28257,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Mann, Austin E.</creatorcontrib><creatorcontrib>Sun, Pei</creatorcontrib><creatorcontrib>Kergaye, Omar</creatorcontrib><creatorcontrib>McNeill, Wyatt</creatorcontrib><creatorcontrib>Xia, Yang</creatorcontrib><creatorcontrib>Yousefiani, Ali</creatorcontrib><creatorcontrib>Fang, Z. Zak</creatorcontrib><title>Analysis of the Elevated Temperature Plastic Flow Response of Ti-6Al-4V Produced via the Hydrogen Sintering and Phase Transformation (HSPT) Process</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><addtitle>METALL MATER TRANS A</addtitle><description>An analysis pertaining to hot deformation behavior was conducted on two unique titanium alloy microstructures. Each product was manufactured from commercially available blended elemental Ti-6Al-4V powder, consolidated by sintering in vacuum or hydrogen. The initial microstructures produced by these distinctive sintering atmospheres are represented by a coarse lamellar structure (produced by vacuum sintering) and a very fine lamellar structure [produced by Hydrogen Sintering Phase Transformation (HSPT)]. Performance of these materials was assessed by simulating representative titanium breakdown and conversion during thermomechanical processing through elevated temperature compression testing on a Gleeble® 3500 Hydrawedge II® system. Compression tests were performed on cylindrical specimens at sub and near-transus temperatures (850 °C, 900 °C, 950 °C, and 1000 °C) and at moderate strain rates of 0.01 and 0.10 s −1 . The very fine lamellar microstructure exhibited similar flow behavior compared to the coarse lamellar structure, although with a typically slightly higher peak stress and greater degree of flow softening. In addition, the microstructure produced by HSPT retained a fine, equiaxed structure upon deformation, making it highly suitable for powder-based thermomechanically processed titanium alloy products.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Compression tests</subject><subject>Deformation</subject><subject>Equiaxed structure</subject><subject>High temperature</subject><subject>Hydrogen</subject><subject>Lamellar structure</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Metallic Materials</subject><subject>Metallurgy &amp; Metallurgical Engineering</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Phase transitions</subject><subject>Plastic flow</subject><subject>Science &amp; Technology</subject><subject>Sintering</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Technology</subject><subject>Thermomechanical treatment</subject><subject>Thin Films</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Vacuum sintering</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkM1u1DAURiMEEqXwAqwssQEhF187zs9yNGoZpEod0cA28tg3rauMPdhOq3kOXhhngmCH8OZ68Z1P956ieAvsAhirP0WAqgLKOKNMNqyk_FlxBrIUFNqSPc9_VgsqKy5eFq9ifGCMQSuqs-LnyqnxGG0kfiDpHsnliI8qoSEd7g8YVJoCku2oYrKaXI3-iXzFePAu4kx0llarkZbfyTZ4M-nMPVp1KtocTfB36MitdQmDdXdEOUO29yqjXVAuDj7sVbLekfeb2233Ye7QGOPr4sWgxohvfs_z4tvVZbfe0Oubz1_Wq2uqhawSBSOl0Q0OgkFTNqzWvJXM7FCwui5raBUA2xlhhkrrSivOwegaGyG5FjAocV68W3oPwf-YMKb-wU8h-4g9L6GVsmyB5xRfUjr4GAMO_SHYvQrHHlg_y-8X-X2W35_k9zP0cYGecOeHqC06jX_AbF8K4BmYH-R08__ptU0naWs_uZRRsaDxMCvG8PeGf6z3C4Vup_s</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Mann, Austin E.</creator><creator>Sun, Pei</creator><creator>Kergaye, Omar</creator><creator>McNeill, Wyatt</creator><creator>Xia, Yang</creator><creator>Yousefiani, Ali</creator><creator>Fang, Z. Zak</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20200801</creationdate><title>Analysis of the Elevated Temperature Plastic Flow Response of Ti-6Al-4V Produced via the Hydrogen Sintering and Phase Transformation (HSPT) Process</title><author>Mann, Austin E. ; Sun, Pei ; Kergaye, Omar ; McNeill, Wyatt ; Xia, Yang ; Yousefiani, Ali ; Fang, Z. Zak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-1d55dc8ef30184807c2950dbe30774719a110bd3df6cc6ca221dc7e8352c31fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Compression tests</topic><topic>Deformation</topic><topic>Equiaxed structure</topic><topic>High temperature</topic><topic>Hydrogen</topic><topic>Lamellar structure</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Metallic Materials</topic><topic>Metallurgy &amp; Metallurgical Engineering</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Phase transitions</topic><topic>Plastic flow</topic><topic>Science &amp; Technology</topic><topic>Sintering</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Technology</topic><topic>Thermomechanical treatment</topic><topic>Thin Films</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Vacuum sintering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mann, Austin E.</creatorcontrib><creatorcontrib>Sun, Pei</creatorcontrib><creatorcontrib>Kergaye, Omar</creatorcontrib><creatorcontrib>McNeill, Wyatt</creatorcontrib><creatorcontrib>Xia, Yang</creatorcontrib><creatorcontrib>Yousefiani, Ali</creatorcontrib><creatorcontrib>Fang, Z. Zak</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mann, Austin E.</au><au>Sun, Pei</au><au>Kergaye, Omar</au><au>McNeill, Wyatt</au><au>Xia, Yang</au><au>Yousefiani, Ali</au><au>Fang, Z. Zak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the Elevated Temperature Plastic Flow Response of Ti-6Al-4V Produced via the Hydrogen Sintering and Phase Transformation (HSPT) Process</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><stitle>METALL MATER TRANS A</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>51</volume><issue>8</issue><spage>3956</spage><epage>3966</epage><pages>3956-3966</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>An analysis pertaining to hot deformation behavior was conducted on two unique titanium alloy microstructures. Each product was manufactured from commercially available blended elemental Ti-6Al-4V powder, consolidated by sintering in vacuum or hydrogen. The initial microstructures produced by these distinctive sintering atmospheres are represented by a coarse lamellar structure (produced by vacuum sintering) and a very fine lamellar structure [produced by Hydrogen Sintering Phase Transformation (HSPT)]. Performance of these materials was assessed by simulating representative titanium breakdown and conversion during thermomechanical processing through elevated temperature compression testing on a Gleeble® 3500 Hydrawedge II® system. Compression tests were performed on cylindrical specimens at sub and near-transus temperatures (850 °C, 900 °C, 950 °C, and 1000 °C) and at moderate strain rates of 0.01 and 0.10 s −1 . The very fine lamellar microstructure exhibited similar flow behavior compared to the coarse lamellar structure, although with a typically slightly higher peak stress and greater degree of flow softening. In addition, the microstructure produced by HSPT retained a fine, equiaxed structure upon deformation, making it highly suitable for powder-based thermomechanically processed titanium alloy products.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-020-05804-2</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2020-08, Vol.51 (8), p.3956-3966
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_2419554912
source SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Compression tests
Deformation
Equiaxed structure
High temperature
Hydrogen
Lamellar structure
Materials Science
Materials Science, Multidisciplinary
Metallic Materials
Metallurgy & Metallurgical Engineering
Microstructure
Nanotechnology
Phase transitions
Plastic flow
Science & Technology
Sintering
Structural Materials
Surfaces and Interfaces
Technology
Thermomechanical treatment
Thin Films
Titanium alloys
Titanium base alloys
Vacuum sintering
title Analysis of the Elevated Temperature Plastic Flow Response of Ti-6Al-4V Produced via the Hydrogen Sintering and Phase Transformation (HSPT) Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T06%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20Elevated%20Temperature%20Plastic%20Flow%20Response%20of%20Ti-6Al-4V%20Produced%20via%20the%20Hydrogen%20Sintering%20and%20Phase%20Transformation%20(HSPT)%20Process&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Mann,%20Austin%20E.&rft.date=2020-08-01&rft.volume=51&rft.issue=8&rft.spage=3956&rft.epage=3966&rft.pages=3956-3966&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-020-05804-2&rft_dat=%3Cproquest_cross%3E2419554912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419554912&rft_id=info:pmid/&rfr_iscdi=true