Analysis of the Elevated Temperature Plastic Flow Response of Ti-6Al-4V Produced via the Hydrogen Sintering and Phase Transformation (HSPT) Process
An analysis pertaining to hot deformation behavior was conducted on two unique titanium alloy microstructures. Each product was manufactured from commercially available blended elemental Ti-6Al-4V powder, consolidated by sintering in vacuum or hydrogen. The initial microstructures produced by these...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2020-08, Vol.51 (8), p.3956-3966 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3966 |
---|---|
container_issue | 8 |
container_start_page | 3956 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 51 |
creator | Mann, Austin E. Sun, Pei Kergaye, Omar McNeill, Wyatt Xia, Yang Yousefiani, Ali Fang, Z. Zak |
description | An analysis pertaining to hot deformation behavior was conducted on two unique titanium alloy microstructures. Each product was manufactured from commercially available blended elemental Ti-6Al-4V powder, consolidated by sintering in vacuum or hydrogen. The initial microstructures produced by these distinctive sintering atmospheres are represented by a coarse lamellar structure (produced by vacuum sintering) and a very fine lamellar structure [produced by Hydrogen Sintering Phase Transformation (HSPT)]. Performance of these materials was assessed by simulating representative titanium breakdown and conversion during thermomechanical processing through elevated temperature compression testing on a Gleeble® 3500 Hydrawedge II® system. Compression tests were performed on cylindrical specimens at sub and near-transus temperatures (850 °C, 900 °C, 950 °C, and 1000 °C) and at moderate strain rates of 0.01 and 0.10 s
−1
. The very fine lamellar microstructure exhibited similar flow behavior compared to the coarse lamellar structure, although with a typically slightly higher peak stress and greater degree of flow softening. In addition, the microstructure produced by HSPT retained a fine, equiaxed structure upon deformation, making it highly suitable for powder-based thermomechanically processed titanium alloy products. |
doi_str_mv | 10.1007/s11661-020-05804-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2419554912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419554912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-1d55dc8ef30184807c2950dbe30774719a110bd3df6cc6ca221dc7e8352c31fa3</originalsourceid><addsrcrecordid>eNqNkM1u1DAURiMEEqXwAqwssQEhF187zs9yNGoZpEod0cA28tg3rauMPdhOq3kOXhhngmCH8OZ68Z1P956ieAvsAhirP0WAqgLKOKNMNqyk_FlxBrIUFNqSPc9_VgsqKy5eFq9ifGCMQSuqs-LnyqnxGG0kfiDpHsnliI8qoSEd7g8YVJoCku2oYrKaXI3-iXzFePAu4kx0llarkZbfyTZ4M-nMPVp1KtocTfB36MitdQmDdXdEOUO29yqjXVAuDj7sVbLekfeb2233Ye7QGOPr4sWgxohvfs_z4tvVZbfe0Oubz1_Wq2uqhawSBSOl0Q0OgkFTNqzWvJXM7FCwui5raBUA2xlhhkrrSivOwegaGyG5FjAocV68W3oPwf-YMKb-wU8h-4g9L6GVsmyB5xRfUjr4GAMO_SHYvQrHHlg_y-8X-X2W35_k9zP0cYGecOeHqC06jX_AbF8K4BmYH-R08__ptU0naWs_uZRRsaDxMCvG8PeGf6z3C4Vup_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419554912</pqid></control><display><type>article</type><title>Analysis of the Elevated Temperature Plastic Flow Response of Ti-6Al-4V Produced via the Hydrogen Sintering and Phase Transformation (HSPT) Process</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Mann, Austin E. ; Sun, Pei ; Kergaye, Omar ; McNeill, Wyatt ; Xia, Yang ; Yousefiani, Ali ; Fang, Z. Zak</creator><creatorcontrib>Mann, Austin E. ; Sun, Pei ; Kergaye, Omar ; McNeill, Wyatt ; Xia, Yang ; Yousefiani, Ali ; Fang, Z. Zak</creatorcontrib><description>An analysis pertaining to hot deformation behavior was conducted on two unique titanium alloy microstructures. Each product was manufactured from commercially available blended elemental Ti-6Al-4V powder, consolidated by sintering in vacuum or hydrogen. The initial microstructures produced by these distinctive sintering atmospheres are represented by a coarse lamellar structure (produced by vacuum sintering) and a very fine lamellar structure [produced by Hydrogen Sintering Phase Transformation (HSPT)]. Performance of these materials was assessed by simulating representative titanium breakdown and conversion during thermomechanical processing through elevated temperature compression testing on a Gleeble® 3500 Hydrawedge II® system. Compression tests were performed on cylindrical specimens at sub and near-transus temperatures (850 °C, 900 °C, 950 °C, and 1000 °C) and at moderate strain rates of 0.01 and 0.10 s
−1
. The very fine lamellar microstructure exhibited similar flow behavior compared to the coarse lamellar structure, although with a typically slightly higher peak stress and greater degree of flow softening. In addition, the microstructure produced by HSPT retained a fine, equiaxed structure upon deformation, making it highly suitable for powder-based thermomechanically processed titanium alloy products.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-020-05804-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Compression tests ; Deformation ; Equiaxed structure ; High temperature ; Hydrogen ; Lamellar structure ; Materials Science ; Materials Science, Multidisciplinary ; Metallic Materials ; Metallurgy & Metallurgical Engineering ; Microstructure ; Nanotechnology ; Phase transitions ; Plastic flow ; Science & Technology ; Sintering ; Structural Materials ; Surfaces and Interfaces ; Technology ; Thermomechanical treatment ; Thin Films ; Titanium alloys ; Titanium base alloys ; Vacuum sintering</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2020-08, Vol.51 (8), p.3956-3966</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2020</rights><rights>The Minerals, Metals & Materials Society and ASM International 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000531202000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c356t-1d55dc8ef30184807c2950dbe30774719a110bd3df6cc6ca221dc7e8352c31fa3</citedby><cites>FETCH-LOGICAL-c356t-1d55dc8ef30184807c2950dbe30774719a110bd3df6cc6ca221dc7e8352c31fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-020-05804-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-020-05804-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,28257,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Mann, Austin E.</creatorcontrib><creatorcontrib>Sun, Pei</creatorcontrib><creatorcontrib>Kergaye, Omar</creatorcontrib><creatorcontrib>McNeill, Wyatt</creatorcontrib><creatorcontrib>Xia, Yang</creatorcontrib><creatorcontrib>Yousefiani, Ali</creatorcontrib><creatorcontrib>Fang, Z. Zak</creatorcontrib><title>Analysis of the Elevated Temperature Plastic Flow Response of Ti-6Al-4V Produced via the Hydrogen Sintering and Phase Transformation (HSPT) Process</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><addtitle>METALL MATER TRANS A</addtitle><description>An analysis pertaining to hot deformation behavior was conducted on two unique titanium alloy microstructures. Each product was manufactured from commercially available blended elemental Ti-6Al-4V powder, consolidated by sintering in vacuum or hydrogen. The initial microstructures produced by these distinctive sintering atmospheres are represented by a coarse lamellar structure (produced by vacuum sintering) and a very fine lamellar structure [produced by Hydrogen Sintering Phase Transformation (HSPT)]. Performance of these materials was assessed by simulating representative titanium breakdown and conversion during thermomechanical processing through elevated temperature compression testing on a Gleeble® 3500 Hydrawedge II® system. Compression tests were performed on cylindrical specimens at sub and near-transus temperatures (850 °C, 900 °C, 950 °C, and 1000 °C) and at moderate strain rates of 0.01 and 0.10 s
−1
. The very fine lamellar microstructure exhibited similar flow behavior compared to the coarse lamellar structure, although with a typically slightly higher peak stress and greater degree of flow softening. In addition, the microstructure produced by HSPT retained a fine, equiaxed structure upon deformation, making it highly suitable for powder-based thermomechanically processed titanium alloy products.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Compression tests</subject><subject>Deformation</subject><subject>Equiaxed structure</subject><subject>High temperature</subject><subject>Hydrogen</subject><subject>Lamellar structure</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Metallic Materials</subject><subject>Metallurgy & Metallurgical Engineering</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Phase transitions</subject><subject>Plastic flow</subject><subject>Science & Technology</subject><subject>Sintering</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Technology</subject><subject>Thermomechanical treatment</subject><subject>Thin Films</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Vacuum sintering</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkM1u1DAURiMEEqXwAqwssQEhF187zs9yNGoZpEod0cA28tg3rauMPdhOq3kOXhhngmCH8OZ68Z1P956ieAvsAhirP0WAqgLKOKNMNqyk_FlxBrIUFNqSPc9_VgsqKy5eFq9ifGCMQSuqs-LnyqnxGG0kfiDpHsnliI8qoSEd7g8YVJoCku2oYrKaXI3-iXzFePAu4kx0llarkZbfyTZ4M-nMPVp1KtocTfB36MitdQmDdXdEOUO29yqjXVAuDj7sVbLekfeb2233Ye7QGOPr4sWgxohvfs_z4tvVZbfe0Oubz1_Wq2uqhawSBSOl0Q0OgkFTNqzWvJXM7FCwui5raBUA2xlhhkrrSivOwegaGyG5FjAocV68W3oPwf-YMKb-wU8h-4g9L6GVsmyB5xRfUjr4GAMO_SHYvQrHHlg_y-8X-X2W35_k9zP0cYGecOeHqC06jX_AbF8K4BmYH-R08__ptU0naWs_uZRRsaDxMCvG8PeGf6z3C4Vup_s</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Mann, Austin E.</creator><creator>Sun, Pei</creator><creator>Kergaye, Omar</creator><creator>McNeill, Wyatt</creator><creator>Xia, Yang</creator><creator>Yousefiani, Ali</creator><creator>Fang, Z. Zak</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20200801</creationdate><title>Analysis of the Elevated Temperature Plastic Flow Response of Ti-6Al-4V Produced via the Hydrogen Sintering and Phase Transformation (HSPT) Process</title><author>Mann, Austin E. ; Sun, Pei ; Kergaye, Omar ; McNeill, Wyatt ; Xia, Yang ; Yousefiani, Ali ; Fang, Z. Zak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-1d55dc8ef30184807c2950dbe30774719a110bd3df6cc6ca221dc7e8352c31fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Compression tests</topic><topic>Deformation</topic><topic>Equiaxed structure</topic><topic>High temperature</topic><topic>Hydrogen</topic><topic>Lamellar structure</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Metallic Materials</topic><topic>Metallurgy & Metallurgical Engineering</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Phase transitions</topic><topic>Plastic flow</topic><topic>Science & Technology</topic><topic>Sintering</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Technology</topic><topic>Thermomechanical treatment</topic><topic>Thin Films</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Vacuum sintering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mann, Austin E.</creatorcontrib><creatorcontrib>Sun, Pei</creatorcontrib><creatorcontrib>Kergaye, Omar</creatorcontrib><creatorcontrib>McNeill, Wyatt</creatorcontrib><creatorcontrib>Xia, Yang</creatorcontrib><creatorcontrib>Yousefiani, Ali</creatorcontrib><creatorcontrib>Fang, Z. Zak</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mann, Austin E.</au><au>Sun, Pei</au><au>Kergaye, Omar</au><au>McNeill, Wyatt</au><au>Xia, Yang</au><au>Yousefiani, Ali</au><au>Fang, Z. Zak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the Elevated Temperature Plastic Flow Response of Ti-6Al-4V Produced via the Hydrogen Sintering and Phase Transformation (HSPT) Process</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><stitle>METALL MATER TRANS A</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>51</volume><issue>8</issue><spage>3956</spage><epage>3966</epage><pages>3956-3966</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>An analysis pertaining to hot deformation behavior was conducted on two unique titanium alloy microstructures. Each product was manufactured from commercially available blended elemental Ti-6Al-4V powder, consolidated by sintering in vacuum or hydrogen. The initial microstructures produced by these distinctive sintering atmospheres are represented by a coarse lamellar structure (produced by vacuum sintering) and a very fine lamellar structure [produced by Hydrogen Sintering Phase Transformation (HSPT)]. Performance of these materials was assessed by simulating representative titanium breakdown and conversion during thermomechanical processing through elevated temperature compression testing on a Gleeble® 3500 Hydrawedge II® system. Compression tests were performed on cylindrical specimens at sub and near-transus temperatures (850 °C, 900 °C, 950 °C, and 1000 °C) and at moderate strain rates of 0.01 and 0.10 s
−1
. The very fine lamellar microstructure exhibited similar flow behavior compared to the coarse lamellar structure, although with a typically slightly higher peak stress and greater degree of flow softening. In addition, the microstructure produced by HSPT retained a fine, equiaxed structure upon deformation, making it highly suitable for powder-based thermomechanically processed titanium alloy products.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-020-05804-2</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2020-08, Vol.51 (8), p.3956-3966 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_2419554912 |
source | SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Compression tests Deformation Equiaxed structure High temperature Hydrogen Lamellar structure Materials Science Materials Science, Multidisciplinary Metallic Materials Metallurgy & Metallurgical Engineering Microstructure Nanotechnology Phase transitions Plastic flow Science & Technology Sintering Structural Materials Surfaces and Interfaces Technology Thermomechanical treatment Thin Films Titanium alloys Titanium base alloys Vacuum sintering |
title | Analysis of the Elevated Temperature Plastic Flow Response of Ti-6Al-4V Produced via the Hydrogen Sintering and Phase Transformation (HSPT) Process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T06%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20Elevated%20Temperature%20Plastic%20Flow%20Response%20of%20Ti-6Al-4V%20Produced%20via%20the%20Hydrogen%20Sintering%20and%20Phase%20Transformation%20(HSPT)%20Process&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Mann,%20Austin%20E.&rft.date=2020-08-01&rft.volume=51&rft.issue=8&rft.spage=3956&rft.epage=3966&rft.pages=3956-3966&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-020-05804-2&rft_dat=%3Cproquest_cross%3E2419554912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419554912&rft_id=info:pmid/&rfr_iscdi=true |