Flux Reconstruction Implementation of an Algebraic Wall Model for Large-Eddy Simulation

In the present study, an algebraic equilibrium wall model is implemented and tested for a large-eddy simulation (LES) solver based on the flux reconstruction (FR) method. One of the objectives of the present paper is to verify the main results of Frère et al. (“Application of Wall Models to Disconti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2020-07, Vol.58 (7), p.3051-3062
Hauptverfasser: Shi, Jingchang, Yan, Hong, Wang, Z. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3062
container_issue 7
container_start_page 3051
container_title AIAA journal
container_volume 58
creator Shi, Jingchang
Yan, Hong
Wang, Z. J
description In the present study, an algebraic equilibrium wall model is implemented and tested for a large-eddy simulation (LES) solver based on the flux reconstruction (FR) method. One of the objectives of the present paper is to verify the main results of Frère et al. (“Application of Wall Models to Discontinuous Galerkin LES,” Physics of Fluids, Vol. 29, No. 8, 2017, Paper 085111) under the FR framework. In addition, the influence of the mesh growth ratio in the wall-normal direction and the mesh resolutions in the wall-parallel directions are investigated, as well as the size of the first element in the wall-normal direction. In the present wall model, the wall shear stress is computed according to the wall tangential velocity at the interface between the first and second cells from the wall. The stress is then used to update the solution unknowns. Various strategies are evaluated using a turbulent channel flow at a high Reynolds number. A comparison between a wall-modeled LES and implicit LES (ILES) without a wall model on a coarse mesh shows that the wall-modeled approach produces better results than the ILES. The wall model is then evaluated with the two-dimensional periodic hill problem to assess its capability of capturing flow separation and reattachment. The equilibrium wall model fails to capture turbulent flow separation and reattachment, indicating the need for nonequilibrium wall models for such problems.
doi_str_mv 10.2514/1.J058957
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2419470121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419470121</sourcerecordid><originalsourceid>FETCH-LOGICAL-a323t-5617fcfcdaee5519e8ec16d04e292088035b12c355801007ce4588fdfac49bd53</originalsourceid><addsrcrecordid>eNplkF9LwzAUxYMoOKcPfoOAIPjQmZs0a_o4xqaTieAf5lvJ0pvRkTYzbcF9e-s68MGnw4HfPZdzCLkGNuIS4nsYPTGpUpmckAFIISKh5OcpGTDGIIJY8nNyUdfbzvFEwYCs5q79pq9ofFU3oTVN4Su6KHcOS6wafbDeUl3RidvgOujC0JV2jj77HB21PtClDhuMZnm-p29F2brD0SU5s9rVeHXUIfmYz96nj9Hy5WExnSwjLbhoIjmGxBprco0oJaSo0MA4ZzHylDOlmJBr4EZIqRgwlhiMpVI2t9rE6TqXYkhu-txd8F8t1k229W2oupcZjyGNk64odNRdT5ng6zqgzXahKHXYZ8Cy390yyI67dextz-pC67-0_-APEEtq2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419470121</pqid></control><display><type>article</type><title>Flux Reconstruction Implementation of an Algebraic Wall Model for Large-Eddy Simulation</title><source>Alma/SFX Local Collection</source><creator>Shi, Jingchang ; Yan, Hong ; Wang, Z. J</creator><creatorcontrib>Shi, Jingchang ; Yan, Hong ; Wang, Z. J</creatorcontrib><description>In the present study, an algebraic equilibrium wall model is implemented and tested for a large-eddy simulation (LES) solver based on the flux reconstruction (FR) method. One of the objectives of the present paper is to verify the main results of Frère et al. (“Application of Wall Models to Discontinuous Galerkin LES,” Physics of Fluids, Vol. 29, No. 8, 2017, Paper 085111) under the FR framework. In addition, the influence of the mesh growth ratio in the wall-normal direction and the mesh resolutions in the wall-parallel directions are investigated, as well as the size of the first element in the wall-normal direction. In the present wall model, the wall shear stress is computed according to the wall tangential velocity at the interface between the first and second cells from the wall. The stress is then used to update the solution unknowns. Various strategies are evaluated using a turbulent channel flow at a high Reynolds number. A comparison between a wall-modeled LES and implicit LES (ILES) without a wall model on a coarse mesh shows that the wall-modeled approach produces better results than the ILES. The wall model is then evaluated with the two-dimensional periodic hill problem to assess its capability of capturing flow separation and reattachment. The equilibrium wall model fails to capture turbulent flow separation and reattachment, indicating the need for nonequilibrium wall models for such problems.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J058957</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Algebra ; Channel flow ; Computational fluid dynamics ; Computer simulation ; Evaluation ; Finite element method ; Fluid flow ; Galerkin method ; High Reynolds number ; Large eddy simulation ; Reconstruction ; Reynolds number ; Separation ; Turbulent flow ; Two dimensional models ; Vortices ; Wall shear stresses</subject><ispartof>AIAA journal, 2020-07, Vol.58 (7), p.3051-3062</ispartof><rights>Copyright © 2020 by Jingchang Shi, Hong Yan, and Z. J. Wang. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2020 by Jingchang Shi, Hong Yan, and Z. J. Wang. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a323t-5617fcfcdaee5519e8ec16d04e292088035b12c355801007ce4588fdfac49bd53</citedby><cites>FETCH-LOGICAL-a323t-5617fcfcdaee5519e8ec16d04e292088035b12c355801007ce4588fdfac49bd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shi, Jingchang</creatorcontrib><creatorcontrib>Yan, Hong</creatorcontrib><creatorcontrib>Wang, Z. J</creatorcontrib><title>Flux Reconstruction Implementation of an Algebraic Wall Model for Large-Eddy Simulation</title><title>AIAA journal</title><description>In the present study, an algebraic equilibrium wall model is implemented and tested for a large-eddy simulation (LES) solver based on the flux reconstruction (FR) method. One of the objectives of the present paper is to verify the main results of Frère et al. (“Application of Wall Models to Discontinuous Galerkin LES,” Physics of Fluids, Vol. 29, No. 8, 2017, Paper 085111) under the FR framework. In addition, the influence of the mesh growth ratio in the wall-normal direction and the mesh resolutions in the wall-parallel directions are investigated, as well as the size of the first element in the wall-normal direction. In the present wall model, the wall shear stress is computed according to the wall tangential velocity at the interface between the first and second cells from the wall. The stress is then used to update the solution unknowns. Various strategies are evaluated using a turbulent channel flow at a high Reynolds number. A comparison between a wall-modeled LES and implicit LES (ILES) without a wall model on a coarse mesh shows that the wall-modeled approach produces better results than the ILES. The wall model is then evaluated with the two-dimensional periodic hill problem to assess its capability of capturing flow separation and reattachment. The equilibrium wall model fails to capture turbulent flow separation and reattachment, indicating the need for nonequilibrium wall models for such problems.</description><subject>Algebra</subject><subject>Channel flow</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Evaluation</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Galerkin method</subject><subject>High Reynolds number</subject><subject>Large eddy simulation</subject><subject>Reconstruction</subject><subject>Reynolds number</subject><subject>Separation</subject><subject>Turbulent flow</subject><subject>Two dimensional models</subject><subject>Vortices</subject><subject>Wall shear stresses</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNplkF9LwzAUxYMoOKcPfoOAIPjQmZs0a_o4xqaTieAf5lvJ0pvRkTYzbcF9e-s68MGnw4HfPZdzCLkGNuIS4nsYPTGpUpmckAFIISKh5OcpGTDGIIJY8nNyUdfbzvFEwYCs5q79pq9ofFU3oTVN4Su6KHcOS6wafbDeUl3RidvgOujC0JV2jj77HB21PtClDhuMZnm-p29F2brD0SU5s9rVeHXUIfmYz96nj9Hy5WExnSwjLbhoIjmGxBprco0oJaSo0MA4ZzHylDOlmJBr4EZIqRgwlhiMpVI2t9rE6TqXYkhu-txd8F8t1k229W2oupcZjyGNk64odNRdT5ng6zqgzXahKHXYZ8Cy390yyI67dextz-pC67-0_-APEEtq2g</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Shi, Jingchang</creator><creator>Yan, Hong</creator><creator>Wang, Z. J</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20200701</creationdate><title>Flux Reconstruction Implementation of an Algebraic Wall Model for Large-Eddy Simulation</title><author>Shi, Jingchang ; Yan, Hong ; Wang, Z. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a323t-5617fcfcdaee5519e8ec16d04e292088035b12c355801007ce4588fdfac49bd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Channel flow</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Evaluation</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Galerkin method</topic><topic>High Reynolds number</topic><topic>Large eddy simulation</topic><topic>Reconstruction</topic><topic>Reynolds number</topic><topic>Separation</topic><topic>Turbulent flow</topic><topic>Two dimensional models</topic><topic>Vortices</topic><topic>Wall shear stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Jingchang</creatorcontrib><creatorcontrib>Yan, Hong</creatorcontrib><creatorcontrib>Wang, Z. J</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Jingchang</au><au>Yan, Hong</au><au>Wang, Z. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flux Reconstruction Implementation of an Algebraic Wall Model for Large-Eddy Simulation</atitle><jtitle>AIAA journal</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>58</volume><issue>7</issue><spage>3051</spage><epage>3062</epage><pages>3051-3062</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>In the present study, an algebraic equilibrium wall model is implemented and tested for a large-eddy simulation (LES) solver based on the flux reconstruction (FR) method. One of the objectives of the present paper is to verify the main results of Frère et al. (“Application of Wall Models to Discontinuous Galerkin LES,” Physics of Fluids, Vol. 29, No. 8, 2017, Paper 085111) under the FR framework. In addition, the influence of the mesh growth ratio in the wall-normal direction and the mesh resolutions in the wall-parallel directions are investigated, as well as the size of the first element in the wall-normal direction. In the present wall model, the wall shear stress is computed according to the wall tangential velocity at the interface between the first and second cells from the wall. The stress is then used to update the solution unknowns. Various strategies are evaluated using a turbulent channel flow at a high Reynolds number. A comparison between a wall-modeled LES and implicit LES (ILES) without a wall model on a coarse mesh shows that the wall-modeled approach produces better results than the ILES. The wall model is then evaluated with the two-dimensional periodic hill problem to assess its capability of capturing flow separation and reattachment. The equilibrium wall model fails to capture turbulent flow separation and reattachment, indicating the need for nonequilibrium wall models for such problems.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J058957</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2020-07, Vol.58 (7), p.3051-3062
issn 0001-1452
1533-385X
language eng
recordid cdi_proquest_journals_2419470121
source Alma/SFX Local Collection
subjects Algebra
Channel flow
Computational fluid dynamics
Computer simulation
Evaluation
Finite element method
Fluid flow
Galerkin method
High Reynolds number
Large eddy simulation
Reconstruction
Reynolds number
Separation
Turbulent flow
Two dimensional models
Vortices
Wall shear stresses
title Flux Reconstruction Implementation of an Algebraic Wall Model for Large-Eddy Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flux%20Reconstruction%20Implementation%20of%20an%20Algebraic%20Wall%20Model%20for%20Large-Eddy%20Simulation&rft.jtitle=AIAA%20journal&rft.au=Shi,%20Jingchang&rft.date=2020-07-01&rft.volume=58&rft.issue=7&rft.spage=3051&rft.epage=3062&rft.pages=3051-3062&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J058957&rft_dat=%3Cproquest_cross%3E2419470121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419470121&rft_id=info:pmid/&rfr_iscdi=true