Orbifolds of Reshetikhin-Turaev TQFTs
We construct three classes of generalised orbifolds of Reshetikhin-Turaev theory for a modular tensor category C, using the language of defect TQFT: (i) spherical fusion categories give orbifolds for the "trivial" defect TQFT associated to Vect, (ii) G-crossed extensions of C give group or...
Gespeichert in:
Veröffentlicht in: | Theory and applications of categories 2020-01, Vol.35 (27), p.513 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 27 |
container_start_page | 513 |
container_title | Theory and applications of categories |
container_volume | 35 |
creator | Carqueville, Nils Runkel, Ingo Schaumann, Gregor |
description | We construct three classes of generalised orbifolds of Reshetikhin-Turaev theory for a modular tensor category C, using the language of defect TQFT: (i) spherical fusion categories give orbifolds for the "trivial" defect TQFT associated to Vect, (ii) G-crossed extensions of C give group orbifolds for any finite group G, and (iii) we construct orbifolds from commutative Δ-separable Frobenius algebras in C. We also explain how the Turaev-Viro state sum construction fits into our framework by proving that it is isomorphic to the orbifold of case (i). Moreover, we treat the cases (ii) and (iii) in the more general setting of ribbon tensor categories. For case (ii) we show how Morita equivalence leads to isomorphic orbifolds, and we discuss Tambara-Yamagami categories as particular examples. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2419452773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419452773</sourcerecordid><originalsourceid>FETCH-proquest_journals_24194527733</originalsourceid><addsrcrecordid>eNpjYuA0NDIw1DU1M4zgYOAqLs4yMDAyMjMx42RQ9S9KykzLz0kpVshPUwhKLc5ILcnMzsjM0w0pLUpMLVMICXQLKeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjE0NLE1Mjc3NjY-JUAQCVxy4x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419452773</pqid></control><display><type>article</type><title>Orbifolds of Reshetikhin-Turaev TQFTs</title><source>Free E- Journals</source><source>EZB Electronic Journals Library</source><creator>Carqueville, Nils ; Runkel, Ingo ; Schaumann, Gregor</creator><creatorcontrib>Carqueville, Nils ; Runkel, Ingo ; Schaumann, Gregor</creatorcontrib><description>We construct three classes of generalised orbifolds of Reshetikhin-Turaev theory for a modular tensor category C, using the language of defect TQFT: (i) spherical fusion categories give orbifolds for the "trivial" defect TQFT associated to Vect, (ii) G-crossed extensions of C give group orbifolds for any finite group G, and (iii) we construct orbifolds from commutative Δ-separable Frobenius algebras in C. We also explain how the Turaev-Viro state sum construction fits into our framework by proving that it is isomorphic to the orbifold of case (i). Moreover, we treat the cases (ii) and (iii) in the more general setting of ribbon tensor categories. For case (ii) we show how Morita equivalence leads to isomorphic orbifolds, and we discuss Tambara-Yamagami categories as particular examples.</description><identifier>EISSN: 1201-561X</identifier><language>eng</language><publisher>Sackville: R. Rosebrugh</publisher><subject>Algebraic group theory ; Categories ; Classification ; Group theory ; Mathematical analysis ; Mathematical functions ; Modular construction ; Tensors ; Topological manifolds</subject><ispartof>Theory and applications of categories, 2020-01, Vol.35 (27), p.513</ispartof><rights>Copyright R. Rosebrugh 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Carqueville, Nils</creatorcontrib><creatorcontrib>Runkel, Ingo</creatorcontrib><creatorcontrib>Schaumann, Gregor</creatorcontrib><title>Orbifolds of Reshetikhin-Turaev TQFTs</title><title>Theory and applications of categories</title><description>We construct three classes of generalised orbifolds of Reshetikhin-Turaev theory for a modular tensor category C, using the language of defect TQFT: (i) spherical fusion categories give orbifolds for the "trivial" defect TQFT associated to Vect, (ii) G-crossed extensions of C give group orbifolds for any finite group G, and (iii) we construct orbifolds from commutative Δ-separable Frobenius algebras in C. We also explain how the Turaev-Viro state sum construction fits into our framework by proving that it is isomorphic to the orbifold of case (i). Moreover, we treat the cases (ii) and (iii) in the more general setting of ribbon tensor categories. For case (ii) we show how Morita equivalence leads to isomorphic orbifolds, and we discuss Tambara-Yamagami categories as particular examples.</description><subject>Algebraic group theory</subject><subject>Categories</subject><subject>Classification</subject><subject>Group theory</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Modular construction</subject><subject>Tensors</subject><subject>Topological manifolds</subject><issn>1201-561X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpjYuA0NDIw1DU1M4zgYOAqLs4yMDAyMjMx42RQ9S9KykzLz0kpVshPUwhKLc5ILcnMzsjM0w0pLUpMLVMICXQLKeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjE0NLE1Mjc3NjY-JUAQCVxy4x</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Carqueville, Nils</creator><creator>Runkel, Ingo</creator><creator>Schaumann, Gregor</creator><general>R. Rosebrugh</general><scope>JQ2</scope></search><sort><creationdate>20200101</creationdate><title>Orbifolds of Reshetikhin-Turaev TQFTs</title><author>Carqueville, Nils ; Runkel, Ingo ; Schaumann, Gregor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24194527733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebraic group theory</topic><topic>Categories</topic><topic>Classification</topic><topic>Group theory</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Modular construction</topic><topic>Tensors</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carqueville, Nils</creatorcontrib><creatorcontrib>Runkel, Ingo</creatorcontrib><creatorcontrib>Schaumann, Gregor</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Theory and applications of categories</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carqueville, Nils</au><au>Runkel, Ingo</au><au>Schaumann, Gregor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orbifolds of Reshetikhin-Turaev TQFTs</atitle><jtitle>Theory and applications of categories</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>35</volume><issue>27</issue><spage>513</spage><pages>513-</pages><eissn>1201-561X</eissn><abstract>We construct three classes of generalised orbifolds of Reshetikhin-Turaev theory for a modular tensor category C, using the language of defect TQFT: (i) spherical fusion categories give orbifolds for the "trivial" defect TQFT associated to Vect, (ii) G-crossed extensions of C give group orbifolds for any finite group G, and (iii) we construct orbifolds from commutative Δ-separable Frobenius algebras in C. We also explain how the Turaev-Viro state sum construction fits into our framework by proving that it is isomorphic to the orbifold of case (i). Moreover, we treat the cases (ii) and (iii) in the more general setting of ribbon tensor categories. For case (ii) we show how Morita equivalence leads to isomorphic orbifolds, and we discuss Tambara-Yamagami categories as particular examples.</abstract><cop>Sackville</cop><pub>R. Rosebrugh</pub></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1201-561X |
ispartof | Theory and applications of categories, 2020-01, Vol.35 (27), p.513 |
issn | 1201-561X |
language | eng |
recordid | cdi_proquest_journals_2419452773 |
source | Free E- Journals; EZB Electronic Journals Library |
subjects | Algebraic group theory Categories Classification Group theory Mathematical analysis Mathematical functions Modular construction Tensors Topological manifolds |
title | Orbifolds of Reshetikhin-Turaev TQFTs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orbifolds%20of%20Reshetikhin-Turaev%20TQFTs&rft.jtitle=Theory%20and%20applications%20of%20categories&rft.au=Carqueville,%20Nils&rft.date=2020-01-01&rft.volume=35&rft.issue=27&rft.spage=513&rft.pages=513-&rft.eissn=1201-561X&rft_id=info:doi/&rft_dat=%3Cproquest%3E2419452773%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419452773&rft_id=info:pmid/&rfr_iscdi=true |