Orbifolds of Reshetikhin-Turaev TQFTs

We construct three classes of generalised orbifolds of Reshetikhin-Turaev theory for a modular tensor category C, using the language of defect TQFT: (i) spherical fusion categories give orbifolds for the "trivial" defect TQFT associated to Vect, (ii) G-crossed extensions of C give group or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory and applications of categories 2020-01, Vol.35 (27), p.513
Hauptverfasser: Carqueville, Nils, Runkel, Ingo, Schaumann, Gregor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 27
container_start_page 513
container_title Theory and applications of categories
container_volume 35
creator Carqueville, Nils
Runkel, Ingo
Schaumann, Gregor
description We construct three classes of generalised orbifolds of Reshetikhin-Turaev theory for a modular tensor category C, using the language of defect TQFT: (i) spherical fusion categories give orbifolds for the "trivial" defect TQFT associated to Vect, (ii) G-crossed extensions of C give group orbifolds for any finite group G, and (iii) we construct orbifolds from commutative Δ-separable Frobenius algebras in C. We also explain how the Turaev-Viro state sum construction fits into our framework by proving that it is isomorphic to the orbifold of case (i). Moreover, we treat the cases (ii) and (iii) in the more general setting of ribbon tensor categories. For case (ii) we show how Morita equivalence leads to isomorphic orbifolds, and we discuss Tambara-Yamagami categories as particular examples.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2419452773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419452773</sourcerecordid><originalsourceid>FETCH-proquest_journals_24194527733</originalsourceid><addsrcrecordid>eNpjYuA0NDIw1DU1M4zgYOAqLs4yMDAyMjMx42RQ9S9KykzLz0kpVshPUwhKLc5ILcnMzsjM0w0pLUpMLVMICXQLKeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjE0NLE1Mjc3NjY-JUAQCVxy4x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419452773</pqid></control><display><type>article</type><title>Orbifolds of Reshetikhin-Turaev TQFTs</title><source>Free E- Journals</source><source>EZB Electronic Journals Library</source><creator>Carqueville, Nils ; Runkel, Ingo ; Schaumann, Gregor</creator><creatorcontrib>Carqueville, Nils ; Runkel, Ingo ; Schaumann, Gregor</creatorcontrib><description>We construct three classes of generalised orbifolds of Reshetikhin-Turaev theory for a modular tensor category C, using the language of defect TQFT: (i) spherical fusion categories give orbifolds for the "trivial" defect TQFT associated to Vect, (ii) G-crossed extensions of C give group orbifolds for any finite group G, and (iii) we construct orbifolds from commutative Δ-separable Frobenius algebras in C. We also explain how the Turaev-Viro state sum construction fits into our framework by proving that it is isomorphic to the orbifold of case (i). Moreover, we treat the cases (ii) and (iii) in the more general setting of ribbon tensor categories. For case (ii) we show how Morita equivalence leads to isomorphic orbifolds, and we discuss Tambara-Yamagami categories as particular examples.</description><identifier>EISSN: 1201-561X</identifier><language>eng</language><publisher>Sackville: R. Rosebrugh</publisher><subject>Algebraic group theory ; Categories ; Classification ; Group theory ; Mathematical analysis ; Mathematical functions ; Modular construction ; Tensors ; Topological manifolds</subject><ispartof>Theory and applications of categories, 2020-01, Vol.35 (27), p.513</ispartof><rights>Copyright R. Rosebrugh 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Carqueville, Nils</creatorcontrib><creatorcontrib>Runkel, Ingo</creatorcontrib><creatorcontrib>Schaumann, Gregor</creatorcontrib><title>Orbifolds of Reshetikhin-Turaev TQFTs</title><title>Theory and applications of categories</title><description>We construct three classes of generalised orbifolds of Reshetikhin-Turaev theory for a modular tensor category C, using the language of defect TQFT: (i) spherical fusion categories give orbifolds for the "trivial" defect TQFT associated to Vect, (ii) G-crossed extensions of C give group orbifolds for any finite group G, and (iii) we construct orbifolds from commutative Δ-separable Frobenius algebras in C. We also explain how the Turaev-Viro state sum construction fits into our framework by proving that it is isomorphic to the orbifold of case (i). Moreover, we treat the cases (ii) and (iii) in the more general setting of ribbon tensor categories. For case (ii) we show how Morita equivalence leads to isomorphic orbifolds, and we discuss Tambara-Yamagami categories as particular examples.</description><subject>Algebraic group theory</subject><subject>Categories</subject><subject>Classification</subject><subject>Group theory</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Modular construction</subject><subject>Tensors</subject><subject>Topological manifolds</subject><issn>1201-561X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpjYuA0NDIw1DU1M4zgYOAqLs4yMDAyMjMx42RQ9S9KykzLz0kpVshPUwhKLc5ILcnMzsjM0w0pLUpMLVMICXQLKeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjE0NLE1Mjc3NjY-JUAQCVxy4x</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Carqueville, Nils</creator><creator>Runkel, Ingo</creator><creator>Schaumann, Gregor</creator><general>R. Rosebrugh</general><scope>JQ2</scope></search><sort><creationdate>20200101</creationdate><title>Orbifolds of Reshetikhin-Turaev TQFTs</title><author>Carqueville, Nils ; Runkel, Ingo ; Schaumann, Gregor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24194527733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebraic group theory</topic><topic>Categories</topic><topic>Classification</topic><topic>Group theory</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Modular construction</topic><topic>Tensors</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carqueville, Nils</creatorcontrib><creatorcontrib>Runkel, Ingo</creatorcontrib><creatorcontrib>Schaumann, Gregor</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Theory and applications of categories</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carqueville, Nils</au><au>Runkel, Ingo</au><au>Schaumann, Gregor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orbifolds of Reshetikhin-Turaev TQFTs</atitle><jtitle>Theory and applications of categories</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>35</volume><issue>27</issue><spage>513</spage><pages>513-</pages><eissn>1201-561X</eissn><abstract>We construct three classes of generalised orbifolds of Reshetikhin-Turaev theory for a modular tensor category C, using the language of defect TQFT: (i) spherical fusion categories give orbifolds for the "trivial" defect TQFT associated to Vect, (ii) G-crossed extensions of C give group orbifolds for any finite group G, and (iii) we construct orbifolds from commutative Δ-separable Frobenius algebras in C. We also explain how the Turaev-Viro state sum construction fits into our framework by proving that it is isomorphic to the orbifold of case (i). Moreover, we treat the cases (ii) and (iii) in the more general setting of ribbon tensor categories. For case (ii) we show how Morita equivalence leads to isomorphic orbifolds, and we discuss Tambara-Yamagami categories as particular examples.</abstract><cop>Sackville</cop><pub>R. Rosebrugh</pub></addata></record>
fulltext fulltext
identifier EISSN: 1201-561X
ispartof Theory and applications of categories, 2020-01, Vol.35 (27), p.513
issn 1201-561X
language eng
recordid cdi_proquest_journals_2419452773
source Free E- Journals; EZB Electronic Journals Library
subjects Algebraic group theory
Categories
Classification
Group theory
Mathematical analysis
Mathematical functions
Modular construction
Tensors
Topological manifolds
title Orbifolds of Reshetikhin-Turaev TQFTs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orbifolds%20of%20Reshetikhin-Turaev%20TQFTs&rft.jtitle=Theory%20and%20applications%20of%20categories&rft.au=Carqueville,%20Nils&rft.date=2020-01-01&rft.volume=35&rft.issue=27&rft.spage=513&rft.pages=513-&rft.eissn=1201-561X&rft_id=info:doi/&rft_dat=%3Cproquest%3E2419452773%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419452773&rft_id=info:pmid/&rfr_iscdi=true