1443-P: Can the ADA Diabetes Risk Score Be Approximated Using Routine Data in the Electronic Health Record? Findings from a Federally Qualified Health Center

Objective: Common diabetes risk screening tools like the American Diabetes Association Diabetes Risk Test (ADADRT) requires survey administration. We studied if diabetes risk can be assessed from routinely available data in the electronic health record (EHR). Methods: ADADRT was administered to 169...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2020-06, Vol.69 (Supplement_1)
Hauptverfasser: CHIMA, CHARLES C., ANIKPEZIE, NNABUCHI, PONGETTI, LAUREN S., WADE, BREANNA C., POWELL, THOMAS, BEECH, BETTINA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue Supplement_1
container_start_page
container_title Diabetes (New York, N.Y.)
container_volume 69
creator CHIMA, CHARLES C.
ANIKPEZIE, NNABUCHI
PONGETTI, LAUREN S.
WADE, BREANNA C.
POWELL, THOMAS
BEECH, BETTINA
description Objective: Common diabetes risk screening tools like the American Diabetes Association Diabetes Risk Test (ADADRT) requires survey administration. We studied if diabetes risk can be assessed from routinely available data in the electronic health record (EHR). Methods: ADADRT was administered to 169 participants without preexisting diagnosis of prediabetes or diabetes, following which the EHR was reviewed for information on ADADRT questions. Standard validation measures were calculated using HbA1c as the gold standard. Results: About 27% of the sample had prediabetes or diabetes. Of the 7 ADADRT variables, physical activity was the least available in the EHR. We observed that modifying ADADRT by dropping physical activity and changing the risk threshold from ≥5 to ≥4 preserves its diagnostic accuracy. The modified ADADRT (cutoff at ≥4) was then approximated using EHR data, yielding the following validation measures: proportion of high-risk persons 56.8%, sensitivity 77.8%, specificity 50.8%, positive predictive value 36.5%, negative predictive value 86.3%, Youden Index 28.6, and area under the receiver-operating characteristic curve 0.64. Conclusion: Diabetes risk score can be estimated using routine EHR data. This could mean a quicker eligibility determination for prediabetes testing and referral to the National Diabetes Prevention Program.
doi_str_mv 10.2337/db20-1443-P
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2419451706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419451706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1066-ad326c8ac3682de52a12976f5865e8936df69fe111405e40d98d287d81033a7a3</originalsourceid><addsrcrecordid>eNotkE1Lw0AQhhdRsFZP_oEBjxLdj2STeJHaDysUrNWCt7DNTuzWNKm7W7A_xv_qlpY5zGHeeYZ5CLlm9I4Lkd7rBacRi2MRTU9Ih-UijwRPP09Jh1LGI5bm6Tm5cG5FKZWhOuTvkH6AvmrALxF6gx4MjFqgRwcz477hvWwtwlMYbTa2_TVr5VHD3JnmC2bt1psGYaC8AnMgDGssvW0bU8IYVe2XMMOA0I8wMo0OWw4q265BwQg1WlXXO3jbqtpUJnCPK31sPNpLclap2uHVsXfJfDT86I-jyevzS783iUpGpYyUFlyWmSqFzLjGhCvG81RWSSYTzHIhdSXzChljMU0wpjrPNM9SnTEqhEqV6JKbAzc8-LNF54tVu7VNOFnwmOVxwlIqQ-r2kCpt65zFqtjYYMPuCkaLvf9i77_YGy2m4h-DfnZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419451706</pqid></control><display><type>article</type><title>1443-P: Can the ADA Diabetes Risk Score Be Approximated Using Routine Data in the Electronic Health Record? Findings from a Federally Qualified Health Center</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>CHIMA, CHARLES C. ; ANIKPEZIE, NNABUCHI ; PONGETTI, LAUREN S. ; WADE, BREANNA C. ; POWELL, THOMAS ; BEECH, BETTINA</creator><creatorcontrib>CHIMA, CHARLES C. ; ANIKPEZIE, NNABUCHI ; PONGETTI, LAUREN S. ; WADE, BREANNA C. ; POWELL, THOMAS ; BEECH, BETTINA</creatorcontrib><description>Objective: Common diabetes risk screening tools like the American Diabetes Association Diabetes Risk Test (ADADRT) requires survey administration. We studied if diabetes risk can be assessed from routinely available data in the electronic health record (EHR). Methods: ADADRT was administered to 169 participants without preexisting diagnosis of prediabetes or diabetes, following which the EHR was reviewed for information on ADADRT questions. Standard validation measures were calculated using HbA1c as the gold standard. Results: About 27% of the sample had prediabetes or diabetes. Of the 7 ADADRT variables, physical activity was the least available in the EHR. We observed that modifying ADADRT by dropping physical activity and changing the risk threshold from ≥5 to ≥4 preserves its diagnostic accuracy. The modified ADADRT (cutoff at ≥4) was then approximated using EHR data, yielding the following validation measures: proportion of high-risk persons 56.8%, sensitivity 77.8%, specificity 50.8%, positive predictive value 36.5%, negative predictive value 86.3%, Youden Index 28.6, and area under the receiver-operating characteristic curve 0.64. Conclusion: Diabetes risk score can be estimated using routine EHR data. This could mean a quicker eligibility determination for prediabetes testing and referral to the National Diabetes Prevention Program.</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/db20-1443-P</identifier><language>eng</language><publisher>New York: American Diabetes Association</publisher><subject>Diabetes ; Diabetes mellitus ; Electronic medical records ; Physical activity</subject><ispartof>Diabetes (New York, N.Y.), 2020-06, Vol.69 (Supplement_1)</ispartof><rights>Copyright American Diabetes Association Jun 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1066-ad326c8ac3682de52a12976f5865e8936df69fe111405e40d98d287d81033a7a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>CHIMA, CHARLES C.</creatorcontrib><creatorcontrib>ANIKPEZIE, NNABUCHI</creatorcontrib><creatorcontrib>PONGETTI, LAUREN S.</creatorcontrib><creatorcontrib>WADE, BREANNA C.</creatorcontrib><creatorcontrib>POWELL, THOMAS</creatorcontrib><creatorcontrib>BEECH, BETTINA</creatorcontrib><title>1443-P: Can the ADA Diabetes Risk Score Be Approximated Using Routine Data in the Electronic Health Record? Findings from a Federally Qualified Health Center</title><title>Diabetes (New York, N.Y.)</title><description>Objective: Common diabetes risk screening tools like the American Diabetes Association Diabetes Risk Test (ADADRT) requires survey administration. We studied if diabetes risk can be assessed from routinely available data in the electronic health record (EHR). Methods: ADADRT was administered to 169 participants without preexisting diagnosis of prediabetes or diabetes, following which the EHR was reviewed for information on ADADRT questions. Standard validation measures were calculated using HbA1c as the gold standard. Results: About 27% of the sample had prediabetes or diabetes. Of the 7 ADADRT variables, physical activity was the least available in the EHR. We observed that modifying ADADRT by dropping physical activity and changing the risk threshold from ≥5 to ≥4 preserves its diagnostic accuracy. The modified ADADRT (cutoff at ≥4) was then approximated using EHR data, yielding the following validation measures: proportion of high-risk persons 56.8%, sensitivity 77.8%, specificity 50.8%, positive predictive value 36.5%, negative predictive value 86.3%, Youden Index 28.6, and area under the receiver-operating characteristic curve 0.64. Conclusion: Diabetes risk score can be estimated using routine EHR data. This could mean a quicker eligibility determination for prediabetes testing and referral to the National Diabetes Prevention Program.</description><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Electronic medical records</subject><subject>Physical activity</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkE1Lw0AQhhdRsFZP_oEBjxLdj2STeJHaDysUrNWCt7DNTuzWNKm7W7A_xv_qlpY5zGHeeYZ5CLlm9I4Lkd7rBacRi2MRTU9Ih-UijwRPP09Jh1LGI5bm6Tm5cG5FKZWhOuTvkH6AvmrALxF6gx4MjFqgRwcz477hvWwtwlMYbTa2_TVr5VHD3JnmC2bt1psGYaC8AnMgDGssvW0bU8IYVe2XMMOA0I8wMo0OWw4q265BwQg1WlXXO3jbqtpUJnCPK31sPNpLclap2uHVsXfJfDT86I-jyevzS783iUpGpYyUFlyWmSqFzLjGhCvG81RWSSYTzHIhdSXzChljMU0wpjrPNM9SnTEqhEqV6JKbAzc8-LNF54tVu7VNOFnwmOVxwlIqQ-r2kCpt65zFqtjYYMPuCkaLvf9i77_YGy2m4h-DfnZs</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>CHIMA, CHARLES C.</creator><creator>ANIKPEZIE, NNABUCHI</creator><creator>PONGETTI, LAUREN S.</creator><creator>WADE, BREANNA C.</creator><creator>POWELL, THOMAS</creator><creator>BEECH, BETTINA</creator><general>American Diabetes Association</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope></search><sort><creationdate>20200601</creationdate><title>1443-P: Can the ADA Diabetes Risk Score Be Approximated Using Routine Data in the Electronic Health Record? Findings from a Federally Qualified Health Center</title><author>CHIMA, CHARLES C. ; ANIKPEZIE, NNABUCHI ; PONGETTI, LAUREN S. ; WADE, BREANNA C. ; POWELL, THOMAS ; BEECH, BETTINA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1066-ad326c8ac3682de52a12976f5865e8936df69fe111405e40d98d287d81033a7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Electronic medical records</topic><topic>Physical activity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHIMA, CHARLES C.</creatorcontrib><creatorcontrib>ANIKPEZIE, NNABUCHI</creatorcontrib><creatorcontrib>PONGETTI, LAUREN S.</creatorcontrib><creatorcontrib>WADE, BREANNA C.</creatorcontrib><creatorcontrib>POWELL, THOMAS</creatorcontrib><creatorcontrib>BEECH, BETTINA</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHIMA, CHARLES C.</au><au>ANIKPEZIE, NNABUCHI</au><au>PONGETTI, LAUREN S.</au><au>WADE, BREANNA C.</au><au>POWELL, THOMAS</au><au>BEECH, BETTINA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1443-P: Can the ADA Diabetes Risk Score Be Approximated Using Routine Data in the Electronic Health Record? Findings from a Federally Qualified Health Center</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>69</volume><issue>Supplement_1</issue><issn>0012-1797</issn><eissn>1939-327X</eissn><abstract>Objective: Common diabetes risk screening tools like the American Diabetes Association Diabetes Risk Test (ADADRT) requires survey administration. We studied if diabetes risk can be assessed from routinely available data in the electronic health record (EHR). Methods: ADADRT was administered to 169 participants without preexisting diagnosis of prediabetes or diabetes, following which the EHR was reviewed for information on ADADRT questions. Standard validation measures were calculated using HbA1c as the gold standard. Results: About 27% of the sample had prediabetes or diabetes. Of the 7 ADADRT variables, physical activity was the least available in the EHR. We observed that modifying ADADRT by dropping physical activity and changing the risk threshold from ≥5 to ≥4 preserves its diagnostic accuracy. The modified ADADRT (cutoff at ≥4) was then approximated using EHR data, yielding the following validation measures: proportion of high-risk persons 56.8%, sensitivity 77.8%, specificity 50.8%, positive predictive value 36.5%, negative predictive value 86.3%, Youden Index 28.6, and area under the receiver-operating characteristic curve 0.64. Conclusion: Diabetes risk score can be estimated using routine EHR data. This could mean a quicker eligibility determination for prediabetes testing and referral to the National Diabetes Prevention Program.</abstract><cop>New York</cop><pub>American Diabetes Association</pub><doi>10.2337/db20-1443-P</doi></addata></record>
fulltext fulltext
identifier ISSN: 0012-1797
ispartof Diabetes (New York, N.Y.), 2020-06, Vol.69 (Supplement_1)
issn 0012-1797
1939-327X
language eng
recordid cdi_proquest_journals_2419451706
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Diabetes
Diabetes mellitus
Electronic medical records
Physical activity
title 1443-P: Can the ADA Diabetes Risk Score Be Approximated Using Routine Data in the Electronic Health Record? Findings from a Federally Qualified Health Center
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A03%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1443-P:%20Can%20the%20ADA%20Diabetes%20Risk%20Score%20Be%20Approximated%20Using%20Routine%20Data%20in%20the%20Electronic%20Health%20Record?%20Findings%20from%20a%20Federally%20Qualified%20Health%20Center&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=CHIMA,%20CHARLES%20C.&rft.date=2020-06-01&rft.volume=69&rft.issue=Supplement_1&rft.issn=0012-1797&rft.eissn=1939-327X&rft_id=info:doi/10.2337/db20-1443-P&rft_dat=%3Cproquest_cross%3E2419451706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419451706&rft_id=info:pmid/&rfr_iscdi=true