Physical Principles of Developing Pressure Sensors Using Refractive Index Changes in Optical Fiber Microbending

The paper deals with the physical principles of development of pressure sensors using changes in the refractive index in the optical fiber microbending. The development of a simplified fiber-optic based pressure sensor is considered to be relevant for the mining industry if used as a temperature-com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian physics journal 2020-06, Vol.63 (2), p.323-331
Hauptverfasser: Mekhtiev, A. D., Yurchenko, A. V., Neshina, E. G., Al’kina, A. D., Madi, P. Sh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 331
container_issue 2
container_start_page 323
container_title Russian physics journal
container_volume 63
creator Mekhtiev, A. D.
Yurchenko, A. V.
Neshina, E. G.
Al’kina, A. D.
Madi, P. Sh
description The paper deals with the physical principles of development of pressure sensors using changes in the refractive index in the optical fiber microbending. The development of a simplified fiber-optic based pressure sensor is considered to be relevant for the mining industry if used as a temperature-compensated pressure sensor to avoid known disadvantages of various optical interferometers. An important point is the use of a G.652 standard single-mode optical fiber, which is also used as a guide for electrical signal transmission. The proposed information measurement system is capable of making remote measurements of the rock pressure on the powered support. The ground expressions are given to describe a physical process of the pressure measurement based on the photoelastic effect observed at microbending. The obtained results of the field experiments prove changes in the diffraction spot configuration at the optical fiber end depending on microbending. The finite element program Ansys Static Structural is used for a simulation of the mechanical stress on the optical fiber causing its microbending. The proposed sensor can detect not only pressure, but also temperature and rock mass microdisplacement and can be used for geotechnical monitoring of mine openings representing the danger of gas and coal dust explosion.
doi_str_mv 10.1007/s11182-020-02038-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2419447269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A630672564</galeid><sourcerecordid>A630672564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-16b9e78c9765c38e1bb7cc328186a0a80c45112944270f3cb9009a4f7cce1dfb3</originalsourceid><addsrcrecordid>eNp9kdtKxDAQhosoeHwBrwJeV3Nom_RS1iMoiofrkGYna6QmNeku7ts7awXvJIQMk_-bZOYvimNGTxml8iwzxhQvKaebLVS53ir2WC1F2XKutjGmTVUqpeRusZ_zO6WINXKviI9v6-yt6clj8sH6oYdMoiMXsII-Dj4s8AJyXiYgzxByTJm85k36CVwydvQrILdhDl9k9mbCAmkfyMMw_tS88h0kcu9tih2EOWKHxY4zfYaj3_OgeL26fJndlHcP17ez87vSilqNJWu6FqSyrWxqKxSwrpPWCq6Yagw1itqqZoy3VcUldcJ2LaWtqRyKgM1dJw6Kk6nukOLnEvKo3-MyBXxS84ohJ3nToup0Ui1MD9oHF0fsCdccPryNAZzH_HkjcFa8bioE-ARgRzkncHpI_sOktWZUb5zQkxMaXdA_Tug1QmKCMopxROnvL_9Q30FxjKU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419447269</pqid></control><display><type>article</type><title>Physical Principles of Developing Pressure Sensors Using Refractive Index Changes in Optical Fiber Microbending</title><source>Springer Nature - Complete Springer Journals</source><creator>Mekhtiev, A. D. ; Yurchenko, A. V. ; Neshina, E. G. ; Al’kina, A. D. ; Madi, P. Sh</creator><creatorcontrib>Mekhtiev, A. D. ; Yurchenko, A. V. ; Neshina, E. G. ; Al’kina, A. D. ; Madi, P. Sh</creatorcontrib><description>The paper deals with the physical principles of development of pressure sensors using changes in the refractive index in the optical fiber microbending. The development of a simplified fiber-optic based pressure sensor is considered to be relevant for the mining industry if used as a temperature-compensated pressure sensor to avoid known disadvantages of various optical interferometers. An important point is the use of a G.652 standard single-mode optical fiber, which is also used as a guide for electrical signal transmission. The proposed information measurement system is capable of making remote measurements of the rock pressure on the powered support. The ground expressions are given to describe a physical process of the pressure measurement based on the photoelastic effect observed at microbending. The obtained results of the field experiments prove changes in the diffraction spot configuration at the optical fiber end depending on microbending. The finite element program Ansys Static Structural is used for a simulation of the mechanical stress on the optical fiber causing its microbending. The proposed sensor can detect not only pressure, but also temperature and rock mass microdisplacement and can be used for geotechnical monitoring of mine openings representing the danger of gas and coal dust explosion.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-020-02038-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>CAD ; Coal dust ; Coal mines ; Computer aided design ; Condensed Matter Physics ; Equipment and supplies ; Fiber optics ; Finite element method ; Hadrons ; Heavy Ions ; Lasers ; Mathematical and Computational Physics ; Measuring instruments ; Mining industry ; Nuclear Physics ; Optical Devices ; Optical fibers ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Pressure measurement ; Pressure sensors ; Principles ; Refractivity ; Rock masses ; Sensors ; Signal transmission ; Theoretical</subject><ispartof>Russian physics journal, 2020-06, Vol.63 (2), p.323-331</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-16b9e78c9765c38e1bb7cc328186a0a80c45112944270f3cb9009a4f7cce1dfb3</citedby><cites>FETCH-LOGICAL-c358t-16b9e78c9765c38e1bb7cc328186a0a80c45112944270f3cb9009a4f7cce1dfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11182-020-02038-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11182-020-02038-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mekhtiev, A. D.</creatorcontrib><creatorcontrib>Yurchenko, A. V.</creatorcontrib><creatorcontrib>Neshina, E. G.</creatorcontrib><creatorcontrib>Al’kina, A. D.</creatorcontrib><creatorcontrib>Madi, P. Sh</creatorcontrib><title>Physical Principles of Developing Pressure Sensors Using Refractive Index Changes in Optical Fiber Microbending</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>The paper deals with the physical principles of development of pressure sensors using changes in the refractive index in the optical fiber microbending. The development of a simplified fiber-optic based pressure sensor is considered to be relevant for the mining industry if used as a temperature-compensated pressure sensor to avoid known disadvantages of various optical interferometers. An important point is the use of a G.652 standard single-mode optical fiber, which is also used as a guide for electrical signal transmission. The proposed information measurement system is capable of making remote measurements of the rock pressure on the powered support. The ground expressions are given to describe a physical process of the pressure measurement based on the photoelastic effect observed at microbending. The obtained results of the field experiments prove changes in the diffraction spot configuration at the optical fiber end depending on microbending. The finite element program Ansys Static Structural is used for a simulation of the mechanical stress on the optical fiber causing its microbending. The proposed sensor can detect not only pressure, but also temperature and rock mass microdisplacement and can be used for geotechnical monitoring of mine openings representing the danger of gas and coal dust explosion.</description><subject>CAD</subject><subject>Coal dust</subject><subject>Coal mines</subject><subject>Computer aided design</subject><subject>Condensed Matter Physics</subject><subject>Equipment and supplies</subject><subject>Fiber optics</subject><subject>Finite element method</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Lasers</subject><subject>Mathematical and Computational Physics</subject><subject>Measuring instruments</subject><subject>Mining industry</subject><subject>Nuclear Physics</subject><subject>Optical Devices</subject><subject>Optical fibers</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pressure measurement</subject><subject>Pressure sensors</subject><subject>Principles</subject><subject>Refractivity</subject><subject>Rock masses</subject><subject>Sensors</subject><subject>Signal transmission</subject><subject>Theoretical</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kdtKxDAQhosoeHwBrwJeV3Nom_RS1iMoiofrkGYna6QmNeku7ts7awXvJIQMk_-bZOYvimNGTxml8iwzxhQvKaebLVS53ir2WC1F2XKutjGmTVUqpeRusZ_zO6WINXKviI9v6-yt6clj8sH6oYdMoiMXsII-Dj4s8AJyXiYgzxByTJm85k36CVwydvQrILdhDl9k9mbCAmkfyMMw_tS88h0kcu9tih2EOWKHxY4zfYaj3_OgeL26fJndlHcP17ez87vSilqNJWu6FqSyrWxqKxSwrpPWCq6Yagw1itqqZoy3VcUldcJ2LaWtqRyKgM1dJw6Kk6nukOLnEvKo3-MyBXxS84ohJ3nToup0Ui1MD9oHF0fsCdccPryNAZzH_HkjcFa8bioE-ARgRzkncHpI_sOktWZUb5zQkxMaXdA_Tug1QmKCMopxROnvL_9Q30FxjKU</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Mekhtiev, A. D.</creator><creator>Yurchenko, A. V.</creator><creator>Neshina, E. G.</creator><creator>Al’kina, A. D.</creator><creator>Madi, P. Sh</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200601</creationdate><title>Physical Principles of Developing Pressure Sensors Using Refractive Index Changes in Optical Fiber Microbending</title><author>Mekhtiev, A. D. ; Yurchenko, A. V. ; Neshina, E. G. ; Al’kina, A. D. ; Madi, P. Sh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-16b9e78c9765c38e1bb7cc328186a0a80c45112944270f3cb9009a4f7cce1dfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CAD</topic><topic>Coal dust</topic><topic>Coal mines</topic><topic>Computer aided design</topic><topic>Condensed Matter Physics</topic><topic>Equipment and supplies</topic><topic>Fiber optics</topic><topic>Finite element method</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Lasers</topic><topic>Mathematical and Computational Physics</topic><topic>Measuring instruments</topic><topic>Mining industry</topic><topic>Nuclear Physics</topic><topic>Optical Devices</topic><topic>Optical fibers</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pressure measurement</topic><topic>Pressure sensors</topic><topic>Principles</topic><topic>Refractivity</topic><topic>Rock masses</topic><topic>Sensors</topic><topic>Signal transmission</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mekhtiev, A. D.</creatorcontrib><creatorcontrib>Yurchenko, A. V.</creatorcontrib><creatorcontrib>Neshina, E. G.</creatorcontrib><creatorcontrib>Al’kina, A. D.</creatorcontrib><creatorcontrib>Madi, P. Sh</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mekhtiev, A. D.</au><au>Yurchenko, A. V.</au><au>Neshina, E. G.</au><au>Al’kina, A. D.</au><au>Madi, P. Sh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical Principles of Developing Pressure Sensors Using Refractive Index Changes in Optical Fiber Microbending</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>63</volume><issue>2</issue><spage>323</spage><epage>331</epage><pages>323-331</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>The paper deals with the physical principles of development of pressure sensors using changes in the refractive index in the optical fiber microbending. The development of a simplified fiber-optic based pressure sensor is considered to be relevant for the mining industry if used as a temperature-compensated pressure sensor to avoid known disadvantages of various optical interferometers. An important point is the use of a G.652 standard single-mode optical fiber, which is also used as a guide for electrical signal transmission. The proposed information measurement system is capable of making remote measurements of the rock pressure on the powered support. The ground expressions are given to describe a physical process of the pressure measurement based on the photoelastic effect observed at microbending. The obtained results of the field experiments prove changes in the diffraction spot configuration at the optical fiber end depending on microbending. The finite element program Ansys Static Structural is used for a simulation of the mechanical stress on the optical fiber causing its microbending. The proposed sensor can detect not only pressure, but also temperature and rock mass microdisplacement and can be used for geotechnical monitoring of mine openings representing the danger of gas and coal dust explosion.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11182-020-02038-y</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-8887
ispartof Russian physics journal, 2020-06, Vol.63 (2), p.323-331
issn 1064-8887
1573-9228
language eng
recordid cdi_proquest_journals_2419447269
source Springer Nature - Complete Springer Journals
subjects CAD
Coal dust
Coal mines
Computer aided design
Condensed Matter Physics
Equipment and supplies
Fiber optics
Finite element method
Hadrons
Heavy Ions
Lasers
Mathematical and Computational Physics
Measuring instruments
Mining industry
Nuclear Physics
Optical Devices
Optical fibers
Optics
Photonics
Physics
Physics and Astronomy
Pressure measurement
Pressure sensors
Principles
Refractivity
Rock masses
Sensors
Signal transmission
Theoretical
title Physical Principles of Developing Pressure Sensors Using Refractive Index Changes in Optical Fiber Microbending
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A37%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20Principles%20of%20Developing%20Pressure%20Sensors%20Using%20Refractive%20Index%20Changes%20in%20Optical%20Fiber%20Microbending&rft.jtitle=Russian%20physics%20journal&rft.au=Mekhtiev,%20A.%20D.&rft.date=2020-06-01&rft.volume=63&rft.issue=2&rft.spage=323&rft.epage=331&rft.pages=323-331&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-020-02038-y&rft_dat=%3Cgale_proqu%3EA630672564%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419447269&rft_id=info:pmid/&rft_galeid=A630672564&rfr_iscdi=true