Nonlinear Electrophysical Phenomena in Ionic Dielectrics with a Complicated Crystal Structure
The methods of quasi-classical kinetic theory are used to study the phenomena of nonlinear relaxation polarization in ionic dielectrics with a complicated crystal lattice structure (layered crystals, ceramics, perovskites, vermiculites, etc.) characterized by high ionic conductivity. A special case...
Gespeichert in:
Veröffentlicht in: | Russian physics journal 2020-06, Vol.63 (2), p.282-289 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 289 |
---|---|
container_issue | 2 |
container_start_page | 282 |
container_title | Russian physics journal |
container_volume | 63 |
creator | Kalytka, V. A. Mekhtiev, A. D. Bashirov, A. V. Yurchenko, A. V. Al’kina, A. D. |
description | The methods of quasi-classical kinetic theory are used to study the phenomena of nonlinear relaxation polarization in ionic dielectrics with a complicated crystal lattice structure (layered crystals, ceramics, perovskites, vermiculites, etc.) characterized by high ionic conductivity. A special case of materials of this class are proton semiconductors and dielectrics (mica, talc, pyrophyllite, etc.) characterized by high proton conductivity in fairly wide ranges of field parameters (100 kV/m – 1000 MV/m) and temperatures (1–1500 K). Based on the continuity equation for the ion current, a generalized kinetic equation is constructed that describes transfer of electric charge in ionic dielectrics in an alternating polarizing field with blocking electrodes. The nonlinearity of the mathematical model is ensured by the dependences of the diffusion coefficients and ion mobility on the parameters of the inhomogeneous electric field in the dielectric. It is shown that the Fokker–Planck equation, known in the kinetic theory, is a zero approximation of the generalized nonlinear kinetic equation with respect to a small dimensionless parameter. The dielectric polarization is written from the solution of the Fokker–Planck equation in the infinite approximation of the perturbation theory (k = 1, 2, 3, ...) for an arbitrary value of the multiplicity factor r over the alternating field frequency. The spectra of a complex dielectric permittivity constructed at the fundamental frequency of the alternating field (r = 1) taking into account all subsequent (starting from the second one) approximations of the perturbation theory (k > 1) differ significantly from the classical laws of the Debye dispersion (corresponding to the first approximation of the perturbation theory (k = 1)). The theoretical foundations have been laid for the program algorithms of computer prediction of properties and parameters of electrical materials for the functional elements of the microelectronic device circuits, isolation technology, and non-volatile high-speed memory devices. |
doi_str_mv | 10.1007/s11182-020-02033-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_sprin</sourceid><recordid>TN_cdi_proquest_journals_2419447012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A630672558</galeid><sourcerecordid>A630672558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-99629d9ec550a0e4258a2bc4682e89adcdba2851d580da2ff18ae14375124fb3</originalsourceid><addsrcrecordid>eNqNkNFOHCEUhieNTaq2L9ArEi_N2AMMM3BppmpNTDXRW0NY5oyLmYUVmJh9e3GnsXdNIQRCvo9z-KvqO4UzCtD9SJRSyWpg8L44r_mn6pCKjteKMXlQztA2tZSy-1IdpfQMULS2O6wefwc_OY8mkosJbY5hu94lZ81E7tbowwa9Ic6T6-CdJT8d7iFnE3l1eU0M6cNmOxU-40D6uEu5mPc5zjbPEb9Wn0czJfz2Zz-uHi4vHvpf9c3t1XV_flNbLmSulWqZGhRaIcAANkxIw1a2aSVDqcxgh5VhUtBBSBgMG0cqDdKGd4KyZlzx4-pkeXYbw8uMKevnMEdfKmrWUNU0HVBWqLOFejITaufHkKOxZQ64cTZ4HF25P295CYYJIYvAFsHGkFLEUW-j25i40xT0e-x6iV2XyPU-ds2LdLpIr7gKY7IOvcUPEQAEV4rDfqhCy_-ne5dNdsH3Yfa5qHxRU8H9E8a_n_5He29rxaYZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419447012</pqid></control><display><type>article</type><title>Nonlinear Electrophysical Phenomena in Ionic Dielectrics with a Complicated Crystal Structure</title><source>Springer Nature - Complete Springer Journals</source><creator>Kalytka, V. A. ; Mekhtiev, A. D. ; Bashirov, A. V. ; Yurchenko, A. V. ; Al’kina, A. D.</creator><creatorcontrib>Kalytka, V. A. ; Mekhtiev, A. D. ; Bashirov, A. V. ; Yurchenko, A. V. ; Al’kina, A. D.</creatorcontrib><description>The methods of quasi-classical kinetic theory are used to study the phenomena of nonlinear relaxation polarization in ionic dielectrics with a complicated crystal lattice structure (layered crystals, ceramics, perovskites, vermiculites, etc.) characterized by high ionic conductivity. A special case of materials of this class are proton semiconductors and dielectrics (mica, talc, pyrophyllite, etc.) characterized by high proton conductivity in fairly wide ranges of field parameters (100 kV/m – 1000 MV/m) and temperatures (1–1500 K). Based on the continuity equation for the ion current, a generalized kinetic equation is constructed that describes transfer of electric charge in ionic dielectrics in an alternating polarizing field with blocking electrodes. The nonlinearity of the mathematical model is ensured by the dependences of the diffusion coefficients and ion mobility on the parameters of the inhomogeneous electric field in the dielectric. It is shown that the Fokker–Planck equation, known in the kinetic theory, is a zero approximation of the generalized nonlinear kinetic equation with respect to a small dimensionless parameter. The dielectric polarization is written from the solution of the Fokker–Planck equation in the infinite approximation of the perturbation theory (k = 1, 2, 3, ...) for an arbitrary value of the multiplicity factor r over the alternating field frequency. The spectra of a complex dielectric permittivity constructed at the fundamental frequency of the alternating field (r = 1) taking into account all subsequent (starting from the second one) approximations of the perturbation theory (k > 1) differ significantly from the classical laws of the Debye dispersion (corresponding to the first approximation of the perturbation theory (k = 1)). The theoretical foundations have been laid for the program algorithms of computer prediction of properties and parameters of electrical materials for the functional elements of the microelectronic device circuits, isolation technology, and non-volatile high-speed memory devices.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-020-02033-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Analysis ; Approximation ; Charge transfer ; Condensed Matter Physics ; Construction ; Continuity equation ; Crystal lattices ; Crystal structure ; Crystals ; Dielectric polarization ; Dielectric relaxation ; Dielectrics ; Electric fields ; Electric properties ; Electrical equipment and supplies ; Electrical machinery ; Electrical resistivity ; Fokker-Planck equation ; Hadrons ; Heavy Ions ; Inhomogeneous electric fields ; Ion currents ; Ionic mobility ; Ions ; Kinetic equations ; Kinetic theory ; Lasers ; Mathematical and Computational Physics ; Memory (Computers) ; Mica ; Nonlinearity ; Nuclear Physics ; Optical Devices ; Optics ; Parameters ; Perturbation theory ; Photonics ; Physical Sciences ; Physics ; Physics and Astronomy ; Physics, Multidisciplinary ; Protons ; Pyrophyllite ; Resonant frequencies ; Science & Technology ; Semiconductors ; Structure ; Theoretical ; Theory ; Vermiculite</subject><ispartof>Russian physics journal, 2020-06, Vol.63 (2), p.282-289</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000539930000009</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c358t-99629d9ec550a0e4258a2bc4682e89adcdba2851d580da2ff18ae14375124fb3</citedby><cites>FETCH-LOGICAL-c358t-99629d9ec550a0e4258a2bc4682e89adcdba2851d580da2ff18ae14375124fb3</cites><orcidid>0000-0003-1275-8989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11182-020-02033-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11182-020-02033-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Kalytka, V. A.</creatorcontrib><creatorcontrib>Mekhtiev, A. D.</creatorcontrib><creatorcontrib>Bashirov, A. V.</creatorcontrib><creatorcontrib>Yurchenko, A. V.</creatorcontrib><creatorcontrib>Al’kina, A. D.</creatorcontrib><title>Nonlinear Electrophysical Phenomena in Ionic Dielectrics with a Complicated Crystal Structure</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><addtitle>RUSS PHYS J</addtitle><description>The methods of quasi-classical kinetic theory are used to study the phenomena of nonlinear relaxation polarization in ionic dielectrics with a complicated crystal lattice structure (layered crystals, ceramics, perovskites, vermiculites, etc.) characterized by high ionic conductivity. A special case of materials of this class are proton semiconductors and dielectrics (mica, talc, pyrophyllite, etc.) characterized by high proton conductivity in fairly wide ranges of field parameters (100 kV/m – 1000 MV/m) and temperatures (1–1500 K). Based on the continuity equation for the ion current, a generalized kinetic equation is constructed that describes transfer of electric charge in ionic dielectrics in an alternating polarizing field with blocking electrodes. The nonlinearity of the mathematical model is ensured by the dependences of the diffusion coefficients and ion mobility on the parameters of the inhomogeneous electric field in the dielectric. It is shown that the Fokker–Planck equation, known in the kinetic theory, is a zero approximation of the generalized nonlinear kinetic equation with respect to a small dimensionless parameter. The dielectric polarization is written from the solution of the Fokker–Planck equation in the infinite approximation of the perturbation theory (k = 1, 2, 3, ...) for an arbitrary value of the multiplicity factor r over the alternating field frequency. The spectra of a complex dielectric permittivity constructed at the fundamental frequency of the alternating field (r = 1) taking into account all subsequent (starting from the second one) approximations of the perturbation theory (k > 1) differ significantly from the classical laws of the Debye dispersion (corresponding to the first approximation of the perturbation theory (k = 1)). The theoretical foundations have been laid for the program algorithms of computer prediction of properties and parameters of electrical materials for the functional elements of the microelectronic device circuits, isolation technology, and non-volatile high-speed memory devices.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Charge transfer</subject><subject>Condensed Matter Physics</subject><subject>Construction</subject><subject>Continuity equation</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Dielectric polarization</subject><subject>Dielectric relaxation</subject><subject>Dielectrics</subject><subject>Electric fields</subject><subject>Electric properties</subject><subject>Electrical equipment and supplies</subject><subject>Electrical machinery</subject><subject>Electrical resistivity</subject><subject>Fokker-Planck equation</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Inhomogeneous electric fields</subject><subject>Ion currents</subject><subject>Ionic mobility</subject><subject>Ions</subject><subject>Kinetic equations</subject><subject>Kinetic theory</subject><subject>Lasers</subject><subject>Mathematical and Computational Physics</subject><subject>Memory (Computers)</subject><subject>Mica</subject><subject>Nonlinearity</subject><subject>Nuclear Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Parameters</subject><subject>Perturbation theory</subject><subject>Photonics</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics, Multidisciplinary</subject><subject>Protons</subject><subject>Pyrophyllite</subject><subject>Resonant frequencies</subject><subject>Science & Technology</subject><subject>Semiconductors</subject><subject>Structure</subject><subject>Theoretical</subject><subject>Theory</subject><subject>Vermiculite</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkNFOHCEUhieNTaq2L9ArEi_N2AMMM3BppmpNTDXRW0NY5oyLmYUVmJh9e3GnsXdNIQRCvo9z-KvqO4UzCtD9SJRSyWpg8L44r_mn6pCKjteKMXlQztA2tZSy-1IdpfQMULS2O6wefwc_OY8mkosJbY5hu94lZ81E7tbowwa9Ic6T6-CdJT8d7iFnE3l1eU0M6cNmOxU-40D6uEu5mPc5zjbPEb9Wn0czJfz2Zz-uHi4vHvpf9c3t1XV_flNbLmSulWqZGhRaIcAANkxIw1a2aSVDqcxgh5VhUtBBSBgMG0cqDdKGd4KyZlzx4-pkeXYbw8uMKevnMEdfKmrWUNU0HVBWqLOFejITaufHkKOxZQ64cTZ4HF25P295CYYJIYvAFsHGkFLEUW-j25i40xT0e-x6iV2XyPU-ds2LdLpIr7gKY7IOvcUPEQAEV4rDfqhCy_-ne5dNdsH3Yfa5qHxRU8H9E8a_n_5He29rxaYZ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Kalytka, V. A.</creator><creator>Mekhtiev, A. D.</creator><creator>Bashirov, A. V.</creator><creator>Yurchenko, A. V.</creator><creator>Al’kina, A. D.</creator><general>Springer US</general><general>Springer Nature</general><general>Springer</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1275-8989</orcidid></search><sort><creationdate>20200601</creationdate><title>Nonlinear Electrophysical Phenomena in Ionic Dielectrics with a Complicated Crystal Structure</title><author>Kalytka, V. A. ; Mekhtiev, A. D. ; Bashirov, A. V. ; Yurchenko, A. V. ; Al’kina, A. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-99629d9ec550a0e4258a2bc4682e89adcdba2851d580da2ff18ae14375124fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Charge transfer</topic><topic>Condensed Matter Physics</topic><topic>Construction</topic><topic>Continuity equation</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Dielectric polarization</topic><topic>Dielectric relaxation</topic><topic>Dielectrics</topic><topic>Electric fields</topic><topic>Electric properties</topic><topic>Electrical equipment and supplies</topic><topic>Electrical machinery</topic><topic>Electrical resistivity</topic><topic>Fokker-Planck equation</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Inhomogeneous electric fields</topic><topic>Ion currents</topic><topic>Ionic mobility</topic><topic>Ions</topic><topic>Kinetic equations</topic><topic>Kinetic theory</topic><topic>Lasers</topic><topic>Mathematical and Computational Physics</topic><topic>Memory (Computers)</topic><topic>Mica</topic><topic>Nonlinearity</topic><topic>Nuclear Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Parameters</topic><topic>Perturbation theory</topic><topic>Photonics</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics, Multidisciplinary</topic><topic>Protons</topic><topic>Pyrophyllite</topic><topic>Resonant frequencies</topic><topic>Science & Technology</topic><topic>Semiconductors</topic><topic>Structure</topic><topic>Theoretical</topic><topic>Theory</topic><topic>Vermiculite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalytka, V. A.</creatorcontrib><creatorcontrib>Mekhtiev, A. D.</creatorcontrib><creatorcontrib>Bashirov, A. V.</creatorcontrib><creatorcontrib>Yurchenko, A. V.</creatorcontrib><creatorcontrib>Al’kina, A. D.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalytka, V. A.</au><au>Mekhtiev, A. D.</au><au>Bashirov, A. V.</au><au>Yurchenko, A. V.</au><au>Al’kina, A. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Electrophysical Phenomena in Ionic Dielectrics with a Complicated Crystal Structure</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><stitle>RUSS PHYS J</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>63</volume><issue>2</issue><spage>282</spage><epage>289</epage><pages>282-289</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>The methods of quasi-classical kinetic theory are used to study the phenomena of nonlinear relaxation polarization in ionic dielectrics with a complicated crystal lattice structure (layered crystals, ceramics, perovskites, vermiculites, etc.) characterized by high ionic conductivity. A special case of materials of this class are proton semiconductors and dielectrics (mica, talc, pyrophyllite, etc.) characterized by high proton conductivity in fairly wide ranges of field parameters (100 kV/m – 1000 MV/m) and temperatures (1–1500 K). Based on the continuity equation for the ion current, a generalized kinetic equation is constructed that describes transfer of electric charge in ionic dielectrics in an alternating polarizing field with blocking electrodes. The nonlinearity of the mathematical model is ensured by the dependences of the diffusion coefficients and ion mobility on the parameters of the inhomogeneous electric field in the dielectric. It is shown that the Fokker–Planck equation, known in the kinetic theory, is a zero approximation of the generalized nonlinear kinetic equation with respect to a small dimensionless parameter. The dielectric polarization is written from the solution of the Fokker–Planck equation in the infinite approximation of the perturbation theory (k = 1, 2, 3, ...) for an arbitrary value of the multiplicity factor r over the alternating field frequency. The spectra of a complex dielectric permittivity constructed at the fundamental frequency of the alternating field (r = 1) taking into account all subsequent (starting from the second one) approximations of the perturbation theory (k > 1) differ significantly from the classical laws of the Debye dispersion (corresponding to the first approximation of the perturbation theory (k = 1)). The theoretical foundations have been laid for the program algorithms of computer prediction of properties and parameters of electrical materials for the functional elements of the microelectronic device circuits, isolation technology, and non-volatile high-speed memory devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11182-020-02033-3</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1275-8989</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8887 |
ispartof | Russian physics journal, 2020-06, Vol.63 (2), p.282-289 |
issn | 1064-8887 1573-9228 |
language | eng |
recordid | cdi_proquest_journals_2419447012 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Analysis Approximation Charge transfer Condensed Matter Physics Construction Continuity equation Crystal lattices Crystal structure Crystals Dielectric polarization Dielectric relaxation Dielectrics Electric fields Electric properties Electrical equipment and supplies Electrical machinery Electrical resistivity Fokker-Planck equation Hadrons Heavy Ions Inhomogeneous electric fields Ion currents Ionic mobility Ions Kinetic equations Kinetic theory Lasers Mathematical and Computational Physics Memory (Computers) Mica Nonlinearity Nuclear Physics Optical Devices Optics Parameters Perturbation theory Photonics Physical Sciences Physics Physics and Astronomy Physics, Multidisciplinary Protons Pyrophyllite Resonant frequencies Science & Technology Semiconductors Structure Theoretical Theory Vermiculite |
title | Nonlinear Electrophysical Phenomena in Ionic Dielectrics with a Complicated Crystal Structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A26%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Electrophysical%20Phenomena%20in%20Ionic%20Dielectrics%20with%20a%20Complicated%20Crystal%20Structure&rft.jtitle=Russian%20physics%20journal&rft.au=Kalytka,%20V.%20A.&rft.date=2020-06-01&rft.volume=63&rft.issue=2&rft.spage=282&rft.epage=289&rft.pages=282-289&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-020-02033-3&rft_dat=%3Cgale_sprin%3EA630672558%3C/gale_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419447012&rft_id=info:pmid/&rft_galeid=A630672558&rfr_iscdi=true |