Dopant-free polymeric hole transport materials for efficient CsPbI2Br perovskite cells with a fill factor exceeding 84
Inorganic perovskite solar cells (PSCs) have attracted extensive attention in recent years due to their excellent thermal stability. The CsPbI2Br PSCs, combining the merits of stable CsPbBr3 and efficient CsPbI3, demonstrate tremendous application potential. In this work, n–i–p structured inorganic...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2020-07, Vol.8 (25), p.8507-8514 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8514 |
---|---|
container_issue | 25 |
container_start_page | 8507 |
container_title | Journal of materials chemistry. C, Materials for optical and electronic devices |
container_volume | 8 |
creator | Wang, Pang Wang, Hui Jeong, Mingyu Lee, Sang Myeon Du, Baocai Mao, Yuchao Ye, Fanghao Zhang, Huijun Li, Donghui Liu, Dan Yang, Changduk Wang, Tao |
description | Inorganic perovskite solar cells (PSCs) have attracted extensive attention in recent years due to their excellent thermal stability. The CsPbI2Br PSCs, combining the merits of stable CsPbBr3 and efficient CsPbI3, demonstrate tremendous application potential. In this work, n–i–p structured inorganic CsPbI2Br PSCs are fabricated using ZnO as the electron transport material (ETM) and dopant-free PBDB-T and its derivatives as the hole transport materials (HTMs). Alkylsilyl-substituted PBDB-T (i.e.PBDB-T-Si) based devices demonstrate the best efficiency of 15.60% (compared to 14.20% of the PBDB-T based reference device) with an ultrahigh fill factor over 84% due to the deep highest occupied molecular orbital energy levels, superior hole mobility and quasi-ohmic contact characteristics. However, fluorine- and chlorine-substituted PBDB-T (i.e.PBDB-T-2F and PBDB-T-2Cl) based devices exhibit enhanced open circuit voltages but decreased short circuit current densities due to the unbalanced hole extraction and large leakage current at the interface, giving moderate efficiencies of 14.87 and 14.03%, respectively. Our work provides a sophisticated analysis of various optoelectronic properties of polymeric HTMs and points out that the quasi-ohmic/ohmic contact plays a critical role in determining device performance. |
doi_str_mv | 10.1039/d0tc01892a |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2419441545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419441545</sourcerecordid><originalsourceid>FETCH-LOGICAL-g220t-af257eafb55ef843b9c6eb40cf2a6af1977a38ac0e1e9bd5263a6bc4055fcc803</originalsourceid><addsrcrecordid>eNo9T8tOwzAQtBBIVKUXvsAS54CfiX2E8KpUCQ5wrjbuunVJ4-C4Bf6eIBBzmdVoZlZDyDlnl5xJe7Vi2TFurIAjMhFMs6LSUh3_36I8JbNh2LIRhpemtBNyuI09dLnwCZH2sf3aYQqObmKLNCfohj6mTHeQRxnagfqYKHofXMAu03p4bubiJtEeUzwMbyEjddiOvo-QNxSoD21LPbj8E_t0iKvQralRZ-TEj3U4--Mpeb2_e6kfi8XTw7y-XhRrIVguwAtdIfhGa_RGyca6EhvFnBdQgue2qkAacAw52mY1LpRQNk4xrb1zhskpufjt7VN83-OQl9u4T934cikUt0pxrbT8Bg8SX_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419441545</pqid></control><display><type>article</type><title>Dopant-free polymeric hole transport materials for efficient CsPbI2Br perovskite cells with a fill factor exceeding 84</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Pang ; Wang, Hui ; Jeong, Mingyu ; Lee, Sang Myeon ; Du, Baocai ; Mao, Yuchao ; Ye, Fanghao ; Zhang, Huijun ; Li, Donghui ; Liu, Dan ; Yang, Changduk ; Wang, Tao</creator><creatorcontrib>Wang, Pang ; Wang, Hui ; Jeong, Mingyu ; Lee, Sang Myeon ; Du, Baocai ; Mao, Yuchao ; Ye, Fanghao ; Zhang, Huijun ; Li, Donghui ; Liu, Dan ; Yang, Changduk ; Wang, Tao</creatorcontrib><description>Inorganic perovskite solar cells (PSCs) have attracted extensive attention in recent years due to their excellent thermal stability. The CsPbI2Br PSCs, combining the merits of stable CsPbBr3 and efficient CsPbI3, demonstrate tremendous application potential. In this work, n–i–p structured inorganic CsPbI2Br PSCs are fabricated using ZnO as the electron transport material (ETM) and dopant-free PBDB-T and its derivatives as the hole transport materials (HTMs). Alkylsilyl-substituted PBDB-T (i.e.PBDB-T-Si) based devices demonstrate the best efficiency of 15.60% (compared to 14.20% of the PBDB-T based reference device) with an ultrahigh fill factor over 84% due to the deep highest occupied molecular orbital energy levels, superior hole mobility and quasi-ohmic contact characteristics. However, fluorine- and chlorine-substituted PBDB-T (i.e.PBDB-T-2F and PBDB-T-2Cl) based devices exhibit enhanced open circuit voltages but decreased short circuit current densities due to the unbalanced hole extraction and large leakage current at the interface, giving moderate efficiencies of 14.87 and 14.03%, respectively. Our work provides a sophisticated analysis of various optoelectronic properties of polymeric HTMs and points out that the quasi-ohmic/ohmic contact plays a critical role in determining device performance.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d0tc01892a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chlorine ; Circuits ; Contact resistance ; Dopants ; Electron transport ; Energy levels ; Fluorine ; Hole mobility ; Leakage current ; Molecular orbitals ; Optoelectronics ; Perovskites ; Photovoltaic cells ; Short circuit currents ; Solar cells ; Substitutes ; Thermal stability ; Zinc oxide</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-07, Vol.8 (25), p.8507-8514</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Pang</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Jeong, Mingyu</creatorcontrib><creatorcontrib>Lee, Sang Myeon</creatorcontrib><creatorcontrib>Du, Baocai</creatorcontrib><creatorcontrib>Mao, Yuchao</creatorcontrib><creatorcontrib>Ye, Fanghao</creatorcontrib><creatorcontrib>Zhang, Huijun</creatorcontrib><creatorcontrib>Li, Donghui</creatorcontrib><creatorcontrib>Liu, Dan</creatorcontrib><creatorcontrib>Yang, Changduk</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><title>Dopant-free polymeric hole transport materials for efficient CsPbI2Br perovskite cells with a fill factor exceeding 84</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Inorganic perovskite solar cells (PSCs) have attracted extensive attention in recent years due to their excellent thermal stability. The CsPbI2Br PSCs, combining the merits of stable CsPbBr3 and efficient CsPbI3, demonstrate tremendous application potential. In this work, n–i–p structured inorganic CsPbI2Br PSCs are fabricated using ZnO as the electron transport material (ETM) and dopant-free PBDB-T and its derivatives as the hole transport materials (HTMs). Alkylsilyl-substituted PBDB-T (i.e.PBDB-T-Si) based devices demonstrate the best efficiency of 15.60% (compared to 14.20% of the PBDB-T based reference device) with an ultrahigh fill factor over 84% due to the deep highest occupied molecular orbital energy levels, superior hole mobility and quasi-ohmic contact characteristics. However, fluorine- and chlorine-substituted PBDB-T (i.e.PBDB-T-2F and PBDB-T-2Cl) based devices exhibit enhanced open circuit voltages but decreased short circuit current densities due to the unbalanced hole extraction and large leakage current at the interface, giving moderate efficiencies of 14.87 and 14.03%, respectively. Our work provides a sophisticated analysis of various optoelectronic properties of polymeric HTMs and points out that the quasi-ohmic/ohmic contact plays a critical role in determining device performance.</description><subject>Chlorine</subject><subject>Circuits</subject><subject>Contact resistance</subject><subject>Dopants</subject><subject>Electron transport</subject><subject>Energy levels</subject><subject>Fluorine</subject><subject>Hole mobility</subject><subject>Leakage current</subject><subject>Molecular orbitals</subject><subject>Optoelectronics</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Short circuit currents</subject><subject>Solar cells</subject><subject>Substitutes</subject><subject>Thermal stability</subject><subject>Zinc oxide</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9T8tOwzAQtBBIVKUXvsAS54CfiX2E8KpUCQ5wrjbuunVJ4-C4Bf6eIBBzmdVoZlZDyDlnl5xJe7Vi2TFurIAjMhFMs6LSUh3_36I8JbNh2LIRhpemtBNyuI09dLnwCZH2sf3aYQqObmKLNCfohj6mTHeQRxnagfqYKHofXMAu03p4bubiJtEeUzwMbyEjddiOvo-QNxSoD21LPbj8E_t0iKvQralRZ-TEj3U4--Mpeb2_e6kfi8XTw7y-XhRrIVguwAtdIfhGa_RGyca6EhvFnBdQgue2qkAacAw52mY1LpRQNk4xrb1zhskpufjt7VN83-OQl9u4T934cikUt0pxrbT8Bg8SX_g</recordid><startdate>20200707</startdate><enddate>20200707</enddate><creator>Wang, Pang</creator><creator>Wang, Hui</creator><creator>Jeong, Mingyu</creator><creator>Lee, Sang Myeon</creator><creator>Du, Baocai</creator><creator>Mao, Yuchao</creator><creator>Ye, Fanghao</creator><creator>Zhang, Huijun</creator><creator>Li, Donghui</creator><creator>Liu, Dan</creator><creator>Yang, Changduk</creator><creator>Wang, Tao</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20200707</creationdate><title>Dopant-free polymeric hole transport materials for efficient CsPbI2Br perovskite cells with a fill factor exceeding 84</title><author>Wang, Pang ; Wang, Hui ; Jeong, Mingyu ; Lee, Sang Myeon ; Du, Baocai ; Mao, Yuchao ; Ye, Fanghao ; Zhang, Huijun ; Li, Donghui ; Liu, Dan ; Yang, Changduk ; Wang, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g220t-af257eafb55ef843b9c6eb40cf2a6af1977a38ac0e1e9bd5263a6bc4055fcc803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chlorine</topic><topic>Circuits</topic><topic>Contact resistance</topic><topic>Dopants</topic><topic>Electron transport</topic><topic>Energy levels</topic><topic>Fluorine</topic><topic>Hole mobility</topic><topic>Leakage current</topic><topic>Molecular orbitals</topic><topic>Optoelectronics</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Short circuit currents</topic><topic>Solar cells</topic><topic>Substitutes</topic><topic>Thermal stability</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Pang</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Jeong, Mingyu</creatorcontrib><creatorcontrib>Lee, Sang Myeon</creatorcontrib><creatorcontrib>Du, Baocai</creatorcontrib><creatorcontrib>Mao, Yuchao</creatorcontrib><creatorcontrib>Ye, Fanghao</creatorcontrib><creatorcontrib>Zhang, Huijun</creatorcontrib><creatorcontrib>Li, Donghui</creatorcontrib><creatorcontrib>Liu, Dan</creatorcontrib><creatorcontrib>Yang, Changduk</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Pang</au><au>Wang, Hui</au><au>Jeong, Mingyu</au><au>Lee, Sang Myeon</au><au>Du, Baocai</au><au>Mao, Yuchao</au><au>Ye, Fanghao</au><au>Zhang, Huijun</au><au>Li, Donghui</au><au>Liu, Dan</au><au>Yang, Changduk</au><au>Wang, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dopant-free polymeric hole transport materials for efficient CsPbI2Br perovskite cells with a fill factor exceeding 84</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2020-07-07</date><risdate>2020</risdate><volume>8</volume><issue>25</issue><spage>8507</spage><epage>8514</epage><pages>8507-8514</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Inorganic perovskite solar cells (PSCs) have attracted extensive attention in recent years due to their excellent thermal stability. The CsPbI2Br PSCs, combining the merits of stable CsPbBr3 and efficient CsPbI3, demonstrate tremendous application potential. In this work, n–i–p structured inorganic CsPbI2Br PSCs are fabricated using ZnO as the electron transport material (ETM) and dopant-free PBDB-T and its derivatives as the hole transport materials (HTMs). Alkylsilyl-substituted PBDB-T (i.e.PBDB-T-Si) based devices demonstrate the best efficiency of 15.60% (compared to 14.20% of the PBDB-T based reference device) with an ultrahigh fill factor over 84% due to the deep highest occupied molecular orbital energy levels, superior hole mobility and quasi-ohmic contact characteristics. However, fluorine- and chlorine-substituted PBDB-T (i.e.PBDB-T-2F and PBDB-T-2Cl) based devices exhibit enhanced open circuit voltages but decreased short circuit current densities due to the unbalanced hole extraction and large leakage current at the interface, giving moderate efficiencies of 14.87 and 14.03%, respectively. Our work provides a sophisticated analysis of various optoelectronic properties of polymeric HTMs and points out that the quasi-ohmic/ohmic contact plays a critical role in determining device performance.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0tc01892a</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7526 |
ispartof | Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-07, Vol.8 (25), p.8507-8514 |
issn | 2050-7526 2050-7534 |
language | eng |
recordid | cdi_proquest_journals_2419441545 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Chlorine Circuits Contact resistance Dopants Electron transport Energy levels Fluorine Hole mobility Leakage current Molecular orbitals Optoelectronics Perovskites Photovoltaic cells Short circuit currents Solar cells Substitutes Thermal stability Zinc oxide |
title | Dopant-free polymeric hole transport materials for efficient CsPbI2Br perovskite cells with a fill factor exceeding 84 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dopant-free%20polymeric%20hole%20transport%20materials%20for%20efficient%20CsPbI2Br%20perovskite%20cells%20with%20a%20fill%20factor%20exceeding%2084&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Wang,%20Pang&rft.date=2020-07-07&rft.volume=8&rft.issue=25&rft.spage=8507&rft.epage=8514&rft.pages=8507-8514&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d0tc01892a&rft_dat=%3Cproquest%3E2419441545%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419441545&rft_id=info:pmid/&rfr_iscdi=true |