Tumor Metabolism‐Engineered Composite Nanoplatforms Potentiate Sonodynamic Therapy via Reshaping Tumor Microenvironment and Facilitating Electron–Hole Pairs’ Separation

Reactive oxygen species (ROS) depletion and low ROS production that result from the intratumoral redox metabolism equilibrium and low energy conversion efficiency from ultrasound mechanical energy to ROS‐represented chemical energy, respectively, are two vital inhibitory factors of sonodynamic thera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-07, Vol.30 (27), p.n/a
Hauptverfasser: Guan, Xin, Yin, Hao‐Hao, Xu, Xiao‐Hong, Xu, Guang, Zhang, Yan, Zhou, Bang‐Guo, Yue, Wen‐Wen, Liu, Chang, Sun, Li‐Ping, Xu, Hui‐Xiong, Zhang, Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 27
container_start_page
container_title Advanced functional materials
container_volume 30
creator Guan, Xin
Yin, Hao‐Hao
Xu, Xiao‐Hong
Xu, Guang
Zhang, Yan
Zhou, Bang‐Guo
Yue, Wen‐Wen
Liu, Chang
Sun, Li‐Ping
Xu, Hui‐Xiong
Zhang, Kun
description Reactive oxygen species (ROS) depletion and low ROS production that result from the intratumoral redox metabolism equilibrium and low energy conversion efficiency from ultrasound mechanical energy to ROS‐represented chemical energy, respectively, are two vital inhibitory factors of sonodynamic therapy (SDT). To address the two concerns, a tumor metabolism‐engineered composite nanoplatform capable of intervening intratumoral ROS metabolism, breaking the redox equilibrium, and reshaping the tumor microenvironment is constructed to reinforce SDT against tumors. In this metabolism‐engineered nanoplatform, Nb2C nanosheets serve as the scaffold to accommodate TiO2 sonosensitizers and l‐buthionine‐sulfoximine. Systematic experiments show that such nanoplatforms can reduce ROS depletion via suppressing glutathione synthesis and simultaneously improving ROS production via the Nb2C‐enhanced production and separation of electron–hole pairs. Contributed by the combined effect, net ROS content can be significantly elevated, which results in the highly efficient anti‐tumor outcomes in vivo and in vitro. Moreover, the combined design principles, that is, tumor metabolism modulation for reducing ROS depletion and electron–hole pair separation for facilitating ROS production, can be extended to other ROS‐dependent therapeutic systems. An intratumoral metabolism modulation‐engineered sonodynamic therapy (SDT)‐based nanoplatform has been constructed to break the reactive oxygen species (ROS)‐involved redox metabolism equilibrium and reshape the tumor microenvironment for reducing ROS depletion, and simultaneously facilitate ROS production via enhancing the production and separation of electron–hole pairs, which enables the significantly improved net content of ROS for highly‐efficient SDT against tumors.
doi_str_mv 10.1002/adfm.202000326
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2419315345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419315345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3176-91406194351c33aa73c7e52ab21113957c551f7549aeabf7132500ab716702703</originalsourceid><addsrcrecordid>eNqFkcFO4zAQhiO0SLDAlbOlPbd47DgmR9RtAYlCBUXiFk3TCRgldtZ2Qb31EVbaEy_BQ_VJSFXEHjnNSP_3z6_RnyTHwPvAuTjBedX0BReccymynWQfMsh6kovTH187POwlP0N45hy0lul-8j5dNM6zMUWcudqEZr36O7SPxhJ5mrOBa1oXTCR2jda1NcbK-SawiYtko8FOuHPWzZcWG1Oy6RN5bJfsxSC7pfCErbGP7DPClN6RfTHe2aYzM7RzNsLS1CZi3HDDmsrYqevVvwtXE5ug8WG9emN31KLvGGcPk90K60BHn_MguR8Np4OL3tXN-eXg7KpXStBZL4eUZ5CnUkEpJaKWpSYlcCYAQOZKl0pBpVWaI-Gs0iCF4hxnGjLNhebyIPm1vdt692dBIRbPbuFtF1mIFHIJSqaqo_pbqvssBE9V0XrToF8WwItNJ8Wmk-Krk86Qbw2vpqblN3Rx9ns0_u_9ADt4ll8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419315345</pqid></control><display><type>article</type><title>Tumor Metabolism‐Engineered Composite Nanoplatforms Potentiate Sonodynamic Therapy via Reshaping Tumor Microenvironment and Facilitating Electron–Hole Pairs’ Separation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guan, Xin ; Yin, Hao‐Hao ; Xu, Xiao‐Hong ; Xu, Guang ; Zhang, Yan ; Zhou, Bang‐Guo ; Yue, Wen‐Wen ; Liu, Chang ; Sun, Li‐Ping ; Xu, Hui‐Xiong ; Zhang, Kun</creator><creatorcontrib>Guan, Xin ; Yin, Hao‐Hao ; Xu, Xiao‐Hong ; Xu, Guang ; Zhang, Yan ; Zhou, Bang‐Guo ; Yue, Wen‐Wen ; Liu, Chang ; Sun, Li‐Ping ; Xu, Hui‐Xiong ; Zhang, Kun</creatorcontrib><description>Reactive oxygen species (ROS) depletion and low ROS production that result from the intratumoral redox metabolism equilibrium and low energy conversion efficiency from ultrasound mechanical energy to ROS‐represented chemical energy, respectively, are two vital inhibitory factors of sonodynamic therapy (SDT). To address the two concerns, a tumor metabolism‐engineered composite nanoplatform capable of intervening intratumoral ROS metabolism, breaking the redox equilibrium, and reshaping the tumor microenvironment is constructed to reinforce SDT against tumors. In this metabolism‐engineered nanoplatform, Nb2C nanosheets serve as the scaffold to accommodate TiO2 sonosensitizers and l‐buthionine‐sulfoximine. Systematic experiments show that such nanoplatforms can reduce ROS depletion via suppressing glutathione synthesis and simultaneously improving ROS production via the Nb2C‐enhanced production and separation of electron–hole pairs. Contributed by the combined effect, net ROS content can be significantly elevated, which results in the highly efficient anti‐tumor outcomes in vivo and in vitro. Moreover, the combined design principles, that is, tumor metabolism modulation for reducing ROS depletion and electron–hole pair separation for facilitating ROS production, can be extended to other ROS‐dependent therapeutic systems. An intratumoral metabolism modulation‐engineered sonodynamic therapy (SDT)‐based nanoplatform has been constructed to break the reactive oxygen species (ROS)‐involved redox metabolism equilibrium and reshape the tumor microenvironment for reducing ROS depletion, and simultaneously facilitate ROS production via enhancing the production and separation of electron–hole pairs, which enables the significantly improved net content of ROS for highly‐efficient SDT against tumors.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202000326</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Chemical energy ; Depletion ; Electrons ; electron–hole pairs ; Energy conversion efficiency ; Glutathione ; Materials science ; Metabolism ; Niobium carbide ; reactive oxygen species ; redox metabolism modulation ; Separation ; Sonodynamic therapy ; Titanium dioxide ; tumor microenvironment</subject><ispartof>Advanced functional materials, 2020-07, Vol.30 (27), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3176-91406194351c33aa73c7e52ab21113957c551f7549aeabf7132500ab716702703</citedby><cites>FETCH-LOGICAL-c3176-91406194351c33aa73c7e52ab21113957c551f7549aeabf7132500ab716702703</cites><orcidid>0000-0002-6971-1164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202000326$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202000326$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Guan, Xin</creatorcontrib><creatorcontrib>Yin, Hao‐Hao</creatorcontrib><creatorcontrib>Xu, Xiao‐Hong</creatorcontrib><creatorcontrib>Xu, Guang</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Zhou, Bang‐Guo</creatorcontrib><creatorcontrib>Yue, Wen‐Wen</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Sun, Li‐Ping</creatorcontrib><creatorcontrib>Xu, Hui‐Xiong</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><title>Tumor Metabolism‐Engineered Composite Nanoplatforms Potentiate Sonodynamic Therapy via Reshaping Tumor Microenvironment and Facilitating Electron–Hole Pairs’ Separation</title><title>Advanced functional materials</title><description>Reactive oxygen species (ROS) depletion and low ROS production that result from the intratumoral redox metabolism equilibrium and low energy conversion efficiency from ultrasound mechanical energy to ROS‐represented chemical energy, respectively, are two vital inhibitory factors of sonodynamic therapy (SDT). To address the two concerns, a tumor metabolism‐engineered composite nanoplatform capable of intervening intratumoral ROS metabolism, breaking the redox equilibrium, and reshaping the tumor microenvironment is constructed to reinforce SDT against tumors. In this metabolism‐engineered nanoplatform, Nb2C nanosheets serve as the scaffold to accommodate TiO2 sonosensitizers and l‐buthionine‐sulfoximine. Systematic experiments show that such nanoplatforms can reduce ROS depletion via suppressing glutathione synthesis and simultaneously improving ROS production via the Nb2C‐enhanced production and separation of electron–hole pairs. Contributed by the combined effect, net ROS content can be significantly elevated, which results in the highly efficient anti‐tumor outcomes in vivo and in vitro. Moreover, the combined design principles, that is, tumor metabolism modulation for reducing ROS depletion and electron–hole pair separation for facilitating ROS production, can be extended to other ROS‐dependent therapeutic systems. An intratumoral metabolism modulation‐engineered sonodynamic therapy (SDT)‐based nanoplatform has been constructed to break the reactive oxygen species (ROS)‐involved redox metabolism equilibrium and reshape the tumor microenvironment for reducing ROS depletion, and simultaneously facilitate ROS production via enhancing the production and separation of electron–hole pairs, which enables the significantly improved net content of ROS for highly‐efficient SDT against tumors.</description><subject>Chemical energy</subject><subject>Depletion</subject><subject>Electrons</subject><subject>electron–hole pairs</subject><subject>Energy conversion efficiency</subject><subject>Glutathione</subject><subject>Materials science</subject><subject>Metabolism</subject><subject>Niobium carbide</subject><subject>reactive oxygen species</subject><subject>redox metabolism modulation</subject><subject>Separation</subject><subject>Sonodynamic therapy</subject><subject>Titanium dioxide</subject><subject>tumor microenvironment</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkcFO4zAQhiO0SLDAlbOlPbd47DgmR9RtAYlCBUXiFk3TCRgldtZ2Qb31EVbaEy_BQ_VJSFXEHjnNSP_3z6_RnyTHwPvAuTjBedX0BReccymynWQfMsh6kovTH187POwlP0N45hy0lul-8j5dNM6zMUWcudqEZr36O7SPxhJ5mrOBa1oXTCR2jda1NcbK-SawiYtko8FOuHPWzZcWG1Oy6RN5bJfsxSC7pfCErbGP7DPClN6RfTHe2aYzM7RzNsLS1CZi3HDDmsrYqevVvwtXE5ug8WG9emN31KLvGGcPk90K60BHn_MguR8Np4OL3tXN-eXg7KpXStBZL4eUZ5CnUkEpJaKWpSYlcCYAQOZKl0pBpVWaI-Gs0iCF4hxnGjLNhebyIPm1vdt692dBIRbPbuFtF1mIFHIJSqaqo_pbqvssBE9V0XrToF8WwItNJ8Wmk-Krk86Qbw2vpqblN3Rx9ns0_u_9ADt4ll8</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Guan, Xin</creator><creator>Yin, Hao‐Hao</creator><creator>Xu, Xiao‐Hong</creator><creator>Xu, Guang</creator><creator>Zhang, Yan</creator><creator>Zhou, Bang‐Guo</creator><creator>Yue, Wen‐Wen</creator><creator>Liu, Chang</creator><creator>Sun, Li‐Ping</creator><creator>Xu, Hui‐Xiong</creator><creator>Zhang, Kun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6971-1164</orcidid></search><sort><creationdate>20200701</creationdate><title>Tumor Metabolism‐Engineered Composite Nanoplatforms Potentiate Sonodynamic Therapy via Reshaping Tumor Microenvironment and Facilitating Electron–Hole Pairs’ Separation</title><author>Guan, Xin ; Yin, Hao‐Hao ; Xu, Xiao‐Hong ; Xu, Guang ; Zhang, Yan ; Zhou, Bang‐Guo ; Yue, Wen‐Wen ; Liu, Chang ; Sun, Li‐Ping ; Xu, Hui‐Xiong ; Zhang, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3176-91406194351c33aa73c7e52ab21113957c551f7549aeabf7132500ab716702703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical energy</topic><topic>Depletion</topic><topic>Electrons</topic><topic>electron–hole pairs</topic><topic>Energy conversion efficiency</topic><topic>Glutathione</topic><topic>Materials science</topic><topic>Metabolism</topic><topic>Niobium carbide</topic><topic>reactive oxygen species</topic><topic>redox metabolism modulation</topic><topic>Separation</topic><topic>Sonodynamic therapy</topic><topic>Titanium dioxide</topic><topic>tumor microenvironment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Xin</creatorcontrib><creatorcontrib>Yin, Hao‐Hao</creatorcontrib><creatorcontrib>Xu, Xiao‐Hong</creatorcontrib><creatorcontrib>Xu, Guang</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Zhou, Bang‐Guo</creatorcontrib><creatorcontrib>Yue, Wen‐Wen</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Sun, Li‐Ping</creatorcontrib><creatorcontrib>Xu, Hui‐Xiong</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Xin</au><au>Yin, Hao‐Hao</au><au>Xu, Xiao‐Hong</au><au>Xu, Guang</au><au>Zhang, Yan</au><au>Zhou, Bang‐Guo</au><au>Yue, Wen‐Wen</au><au>Liu, Chang</au><au>Sun, Li‐Ping</au><au>Xu, Hui‐Xiong</au><au>Zhang, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tumor Metabolism‐Engineered Composite Nanoplatforms Potentiate Sonodynamic Therapy via Reshaping Tumor Microenvironment and Facilitating Electron–Hole Pairs’ Separation</atitle><jtitle>Advanced functional materials</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>30</volume><issue>27</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Reactive oxygen species (ROS) depletion and low ROS production that result from the intratumoral redox metabolism equilibrium and low energy conversion efficiency from ultrasound mechanical energy to ROS‐represented chemical energy, respectively, are two vital inhibitory factors of sonodynamic therapy (SDT). To address the two concerns, a tumor metabolism‐engineered composite nanoplatform capable of intervening intratumoral ROS metabolism, breaking the redox equilibrium, and reshaping the tumor microenvironment is constructed to reinforce SDT against tumors. In this metabolism‐engineered nanoplatform, Nb2C nanosheets serve as the scaffold to accommodate TiO2 sonosensitizers and l‐buthionine‐sulfoximine. Systematic experiments show that such nanoplatforms can reduce ROS depletion via suppressing glutathione synthesis and simultaneously improving ROS production via the Nb2C‐enhanced production and separation of electron–hole pairs. Contributed by the combined effect, net ROS content can be significantly elevated, which results in the highly efficient anti‐tumor outcomes in vivo and in vitro. Moreover, the combined design principles, that is, tumor metabolism modulation for reducing ROS depletion and electron–hole pair separation for facilitating ROS production, can be extended to other ROS‐dependent therapeutic systems. An intratumoral metabolism modulation‐engineered sonodynamic therapy (SDT)‐based nanoplatform has been constructed to break the reactive oxygen species (ROS)‐involved redox metabolism equilibrium and reshape the tumor microenvironment for reducing ROS depletion, and simultaneously facilitate ROS production via enhancing the production and separation of electron–hole pairs, which enables the significantly improved net content of ROS for highly‐efficient SDT against tumors.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202000326</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6971-1164</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-07, Vol.30 (27), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2419315345
source Wiley Online Library Journals Frontfile Complete
subjects Chemical energy
Depletion
Electrons
electron–hole pairs
Energy conversion efficiency
Glutathione
Materials science
Metabolism
Niobium carbide
reactive oxygen species
redox metabolism modulation
Separation
Sonodynamic therapy
Titanium dioxide
tumor microenvironment
title Tumor Metabolism‐Engineered Composite Nanoplatforms Potentiate Sonodynamic Therapy via Reshaping Tumor Microenvironment and Facilitating Electron–Hole Pairs’ Separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A06%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tumor%20Metabolism%E2%80%90Engineered%20Composite%20Nanoplatforms%20Potentiate%20Sonodynamic%20Therapy%20via%20Reshaping%20Tumor%20Microenvironment%20and%20Facilitating%20Electron%E2%80%93Hole%20Pairs%E2%80%99%20Separation&rft.jtitle=Advanced%20functional%20materials&rft.au=Guan,%20Xin&rft.date=2020-07-01&rft.volume=30&rft.issue=27&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202000326&rft_dat=%3Cproquest_cross%3E2419315345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419315345&rft_id=info:pmid/&rfr_iscdi=true