Tumor Metabolism‐Engineered Composite Nanoplatforms Potentiate Sonodynamic Therapy via Reshaping Tumor Microenvironment and Facilitating Electron–Hole Pairs’ Separation
Reactive oxygen species (ROS) depletion and low ROS production that result from the intratumoral redox metabolism equilibrium and low energy conversion efficiency from ultrasound mechanical energy to ROS‐represented chemical energy, respectively, are two vital inhibitory factors of sonodynamic thera...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-07, Vol.30 (27), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 27 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Guan, Xin Yin, Hao‐Hao Xu, Xiao‐Hong Xu, Guang Zhang, Yan Zhou, Bang‐Guo Yue, Wen‐Wen Liu, Chang Sun, Li‐Ping Xu, Hui‐Xiong Zhang, Kun |
description | Reactive oxygen species (ROS) depletion and low ROS production that result from the intratumoral redox metabolism equilibrium and low energy conversion efficiency from ultrasound mechanical energy to ROS‐represented chemical energy, respectively, are two vital inhibitory factors of sonodynamic therapy (SDT). To address the two concerns, a tumor metabolism‐engineered composite nanoplatform capable of intervening intratumoral ROS metabolism, breaking the redox equilibrium, and reshaping the tumor microenvironment is constructed to reinforce SDT against tumors. In this metabolism‐engineered nanoplatform, Nb2C nanosheets serve as the scaffold to accommodate TiO2 sonosensitizers and l‐buthionine‐sulfoximine. Systematic experiments show that such nanoplatforms can reduce ROS depletion via suppressing glutathione synthesis and simultaneously improving ROS production via the Nb2C‐enhanced production and separation of electron–hole pairs. Contributed by the combined effect, net ROS content can be significantly elevated, which results in the highly efficient anti‐tumor outcomes in vivo and in vitro. Moreover, the combined design principles, that is, tumor metabolism modulation for reducing ROS depletion and electron–hole pair separation for facilitating ROS production, can be extended to other ROS‐dependent therapeutic systems.
An intratumoral metabolism modulation‐engineered sonodynamic therapy (SDT)‐based nanoplatform has been constructed to break the reactive oxygen species (ROS)‐involved redox metabolism equilibrium and reshape the tumor microenvironment for reducing ROS depletion, and simultaneously facilitate ROS production via enhancing the production and separation of electron–hole pairs, which enables the significantly improved net content of ROS for highly‐efficient SDT against tumors. |
doi_str_mv | 10.1002/adfm.202000326 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2419315345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419315345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3176-91406194351c33aa73c7e52ab21113957c551f7549aeabf7132500ab716702703</originalsourceid><addsrcrecordid>eNqFkcFO4zAQhiO0SLDAlbOlPbd47DgmR9RtAYlCBUXiFk3TCRgldtZ2Qb31EVbaEy_BQ_VJSFXEHjnNSP_3z6_RnyTHwPvAuTjBedX0BReccymynWQfMsh6kovTH187POwlP0N45hy0lul-8j5dNM6zMUWcudqEZr36O7SPxhJ5mrOBa1oXTCR2jda1NcbK-SawiYtko8FOuHPWzZcWG1Oy6RN5bJfsxSC7pfCErbGP7DPClN6RfTHe2aYzM7RzNsLS1CZi3HDDmsrYqevVvwtXE5ug8WG9emN31KLvGGcPk90K60BHn_MguR8Np4OL3tXN-eXg7KpXStBZL4eUZ5CnUkEpJaKWpSYlcCYAQOZKl0pBpVWaI-Gs0iCF4hxnGjLNhebyIPm1vdt692dBIRbPbuFtF1mIFHIJSqaqo_pbqvssBE9V0XrToF8WwItNJ8Wmk-Krk86Qbw2vpqblN3Rx9ns0_u_9ADt4ll8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419315345</pqid></control><display><type>article</type><title>Tumor Metabolism‐Engineered Composite Nanoplatforms Potentiate Sonodynamic Therapy via Reshaping Tumor Microenvironment and Facilitating Electron–Hole Pairs’ Separation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guan, Xin ; Yin, Hao‐Hao ; Xu, Xiao‐Hong ; Xu, Guang ; Zhang, Yan ; Zhou, Bang‐Guo ; Yue, Wen‐Wen ; Liu, Chang ; Sun, Li‐Ping ; Xu, Hui‐Xiong ; Zhang, Kun</creator><creatorcontrib>Guan, Xin ; Yin, Hao‐Hao ; Xu, Xiao‐Hong ; Xu, Guang ; Zhang, Yan ; Zhou, Bang‐Guo ; Yue, Wen‐Wen ; Liu, Chang ; Sun, Li‐Ping ; Xu, Hui‐Xiong ; Zhang, Kun</creatorcontrib><description>Reactive oxygen species (ROS) depletion and low ROS production that result from the intratumoral redox metabolism equilibrium and low energy conversion efficiency from ultrasound mechanical energy to ROS‐represented chemical energy, respectively, are two vital inhibitory factors of sonodynamic therapy (SDT). To address the two concerns, a tumor metabolism‐engineered composite nanoplatform capable of intervening intratumoral ROS metabolism, breaking the redox equilibrium, and reshaping the tumor microenvironment is constructed to reinforce SDT against tumors. In this metabolism‐engineered nanoplatform, Nb2C nanosheets serve as the scaffold to accommodate TiO2 sonosensitizers and l‐buthionine‐sulfoximine. Systematic experiments show that such nanoplatforms can reduce ROS depletion via suppressing glutathione synthesis and simultaneously improving ROS production via the Nb2C‐enhanced production and separation of electron–hole pairs. Contributed by the combined effect, net ROS content can be significantly elevated, which results in the highly efficient anti‐tumor outcomes in vivo and in vitro. Moreover, the combined design principles, that is, tumor metabolism modulation for reducing ROS depletion and electron–hole pair separation for facilitating ROS production, can be extended to other ROS‐dependent therapeutic systems.
An intratumoral metabolism modulation‐engineered sonodynamic therapy (SDT)‐based nanoplatform has been constructed to break the reactive oxygen species (ROS)‐involved redox metabolism equilibrium and reshape the tumor microenvironment for reducing ROS depletion, and simultaneously facilitate ROS production via enhancing the production and separation of electron–hole pairs, which enables the significantly improved net content of ROS for highly‐efficient SDT against tumors.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202000326</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Chemical energy ; Depletion ; Electrons ; electron–hole pairs ; Energy conversion efficiency ; Glutathione ; Materials science ; Metabolism ; Niobium carbide ; reactive oxygen species ; redox metabolism modulation ; Separation ; Sonodynamic therapy ; Titanium dioxide ; tumor microenvironment</subject><ispartof>Advanced functional materials, 2020-07, Vol.30 (27), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3176-91406194351c33aa73c7e52ab21113957c551f7549aeabf7132500ab716702703</citedby><cites>FETCH-LOGICAL-c3176-91406194351c33aa73c7e52ab21113957c551f7549aeabf7132500ab716702703</cites><orcidid>0000-0002-6971-1164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202000326$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202000326$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Guan, Xin</creatorcontrib><creatorcontrib>Yin, Hao‐Hao</creatorcontrib><creatorcontrib>Xu, Xiao‐Hong</creatorcontrib><creatorcontrib>Xu, Guang</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Zhou, Bang‐Guo</creatorcontrib><creatorcontrib>Yue, Wen‐Wen</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Sun, Li‐Ping</creatorcontrib><creatorcontrib>Xu, Hui‐Xiong</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><title>Tumor Metabolism‐Engineered Composite Nanoplatforms Potentiate Sonodynamic Therapy via Reshaping Tumor Microenvironment and Facilitating Electron–Hole Pairs’ Separation</title><title>Advanced functional materials</title><description>Reactive oxygen species (ROS) depletion and low ROS production that result from the intratumoral redox metabolism equilibrium and low energy conversion efficiency from ultrasound mechanical energy to ROS‐represented chemical energy, respectively, are two vital inhibitory factors of sonodynamic therapy (SDT). To address the two concerns, a tumor metabolism‐engineered composite nanoplatform capable of intervening intratumoral ROS metabolism, breaking the redox equilibrium, and reshaping the tumor microenvironment is constructed to reinforce SDT against tumors. In this metabolism‐engineered nanoplatform, Nb2C nanosheets serve as the scaffold to accommodate TiO2 sonosensitizers and l‐buthionine‐sulfoximine. Systematic experiments show that such nanoplatforms can reduce ROS depletion via suppressing glutathione synthesis and simultaneously improving ROS production via the Nb2C‐enhanced production and separation of electron–hole pairs. Contributed by the combined effect, net ROS content can be significantly elevated, which results in the highly efficient anti‐tumor outcomes in vivo and in vitro. Moreover, the combined design principles, that is, tumor metabolism modulation for reducing ROS depletion and electron–hole pair separation for facilitating ROS production, can be extended to other ROS‐dependent therapeutic systems.
An intratumoral metabolism modulation‐engineered sonodynamic therapy (SDT)‐based nanoplatform has been constructed to break the reactive oxygen species (ROS)‐involved redox metabolism equilibrium and reshape the tumor microenvironment for reducing ROS depletion, and simultaneously facilitate ROS production via enhancing the production and separation of electron–hole pairs, which enables the significantly improved net content of ROS for highly‐efficient SDT against tumors.</description><subject>Chemical energy</subject><subject>Depletion</subject><subject>Electrons</subject><subject>electron–hole pairs</subject><subject>Energy conversion efficiency</subject><subject>Glutathione</subject><subject>Materials science</subject><subject>Metabolism</subject><subject>Niobium carbide</subject><subject>reactive oxygen species</subject><subject>redox metabolism modulation</subject><subject>Separation</subject><subject>Sonodynamic therapy</subject><subject>Titanium dioxide</subject><subject>tumor microenvironment</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkcFO4zAQhiO0SLDAlbOlPbd47DgmR9RtAYlCBUXiFk3TCRgldtZ2Qb31EVbaEy_BQ_VJSFXEHjnNSP_3z6_RnyTHwPvAuTjBedX0BReccymynWQfMsh6kovTH187POwlP0N45hy0lul-8j5dNM6zMUWcudqEZr36O7SPxhJ5mrOBa1oXTCR2jda1NcbK-SawiYtko8FOuHPWzZcWG1Oy6RN5bJfsxSC7pfCErbGP7DPClN6RfTHe2aYzM7RzNsLS1CZi3HDDmsrYqevVvwtXE5ug8WG9emN31KLvGGcPk90K60BHn_MguR8Np4OL3tXN-eXg7KpXStBZL4eUZ5CnUkEpJaKWpSYlcCYAQOZKl0pBpVWaI-Gs0iCF4hxnGjLNhebyIPm1vdt692dBIRbPbuFtF1mIFHIJSqaqo_pbqvssBE9V0XrToF8WwItNJ8Wmk-Krk86Qbw2vpqblN3Rx9ns0_u_9ADt4ll8</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Guan, Xin</creator><creator>Yin, Hao‐Hao</creator><creator>Xu, Xiao‐Hong</creator><creator>Xu, Guang</creator><creator>Zhang, Yan</creator><creator>Zhou, Bang‐Guo</creator><creator>Yue, Wen‐Wen</creator><creator>Liu, Chang</creator><creator>Sun, Li‐Ping</creator><creator>Xu, Hui‐Xiong</creator><creator>Zhang, Kun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6971-1164</orcidid></search><sort><creationdate>20200701</creationdate><title>Tumor Metabolism‐Engineered Composite Nanoplatforms Potentiate Sonodynamic Therapy via Reshaping Tumor Microenvironment and Facilitating Electron–Hole Pairs’ Separation</title><author>Guan, Xin ; Yin, Hao‐Hao ; Xu, Xiao‐Hong ; Xu, Guang ; Zhang, Yan ; Zhou, Bang‐Guo ; Yue, Wen‐Wen ; Liu, Chang ; Sun, Li‐Ping ; Xu, Hui‐Xiong ; Zhang, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3176-91406194351c33aa73c7e52ab21113957c551f7549aeabf7132500ab716702703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical energy</topic><topic>Depletion</topic><topic>Electrons</topic><topic>electron–hole pairs</topic><topic>Energy conversion efficiency</topic><topic>Glutathione</topic><topic>Materials science</topic><topic>Metabolism</topic><topic>Niobium carbide</topic><topic>reactive oxygen species</topic><topic>redox metabolism modulation</topic><topic>Separation</topic><topic>Sonodynamic therapy</topic><topic>Titanium dioxide</topic><topic>tumor microenvironment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Xin</creatorcontrib><creatorcontrib>Yin, Hao‐Hao</creatorcontrib><creatorcontrib>Xu, Xiao‐Hong</creatorcontrib><creatorcontrib>Xu, Guang</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Zhou, Bang‐Guo</creatorcontrib><creatorcontrib>Yue, Wen‐Wen</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Sun, Li‐Ping</creatorcontrib><creatorcontrib>Xu, Hui‐Xiong</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Xin</au><au>Yin, Hao‐Hao</au><au>Xu, Xiao‐Hong</au><au>Xu, Guang</au><au>Zhang, Yan</au><au>Zhou, Bang‐Guo</au><au>Yue, Wen‐Wen</au><au>Liu, Chang</au><au>Sun, Li‐Ping</au><au>Xu, Hui‐Xiong</au><au>Zhang, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tumor Metabolism‐Engineered Composite Nanoplatforms Potentiate Sonodynamic Therapy via Reshaping Tumor Microenvironment and Facilitating Electron–Hole Pairs’ Separation</atitle><jtitle>Advanced functional materials</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>30</volume><issue>27</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Reactive oxygen species (ROS) depletion and low ROS production that result from the intratumoral redox metabolism equilibrium and low energy conversion efficiency from ultrasound mechanical energy to ROS‐represented chemical energy, respectively, are two vital inhibitory factors of sonodynamic therapy (SDT). To address the two concerns, a tumor metabolism‐engineered composite nanoplatform capable of intervening intratumoral ROS metabolism, breaking the redox equilibrium, and reshaping the tumor microenvironment is constructed to reinforce SDT against tumors. In this metabolism‐engineered nanoplatform, Nb2C nanosheets serve as the scaffold to accommodate TiO2 sonosensitizers and l‐buthionine‐sulfoximine. Systematic experiments show that such nanoplatforms can reduce ROS depletion via suppressing glutathione synthesis and simultaneously improving ROS production via the Nb2C‐enhanced production and separation of electron–hole pairs. Contributed by the combined effect, net ROS content can be significantly elevated, which results in the highly efficient anti‐tumor outcomes in vivo and in vitro. Moreover, the combined design principles, that is, tumor metabolism modulation for reducing ROS depletion and electron–hole pair separation for facilitating ROS production, can be extended to other ROS‐dependent therapeutic systems.
An intratumoral metabolism modulation‐engineered sonodynamic therapy (SDT)‐based nanoplatform has been constructed to break the reactive oxygen species (ROS)‐involved redox metabolism equilibrium and reshape the tumor microenvironment for reducing ROS depletion, and simultaneously facilitate ROS production via enhancing the production and separation of electron–hole pairs, which enables the significantly improved net content of ROS for highly‐efficient SDT against tumors.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202000326</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6971-1164</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-07, Vol.30 (27), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2419315345 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Chemical energy Depletion Electrons electron–hole pairs Energy conversion efficiency Glutathione Materials science Metabolism Niobium carbide reactive oxygen species redox metabolism modulation Separation Sonodynamic therapy Titanium dioxide tumor microenvironment |
title | Tumor Metabolism‐Engineered Composite Nanoplatforms Potentiate Sonodynamic Therapy via Reshaping Tumor Microenvironment and Facilitating Electron–Hole Pairs’ Separation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A06%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tumor%20Metabolism%E2%80%90Engineered%20Composite%20Nanoplatforms%20Potentiate%20Sonodynamic%20Therapy%20via%20Reshaping%20Tumor%20Microenvironment%20and%20Facilitating%20Electron%E2%80%93Hole%20Pairs%E2%80%99%20Separation&rft.jtitle=Advanced%20functional%20materials&rft.au=Guan,%20Xin&rft.date=2020-07-01&rft.volume=30&rft.issue=27&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202000326&rft_dat=%3Cproquest_cross%3E2419315345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419315345&rft_id=info:pmid/&rfr_iscdi=true |