Ex‐Solved Ag Nanocatalysts on a Sr‐Free Parent Scaffold Authorize a Highly Efficient Route of Oxygen Reduction

The electrocatalytic value of nanoparticles has attracted substantial attention in relation to energy conversion devices, including solid oxide fuel cells. Among various forms of analogs, ex‐solved metal nanoparticles originating from their parent oxides display strong particle‐substrate interaction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-07, Vol.30 (27), p.n/a
Hauptverfasser: Kim, Jun Hyuk, Kim, Jun Kyu, Seo, Han Gil, Lim, Dae‐Kwang, Jeong, Seung Jin, Seo, Jongsu, Kim, Jinwook, Jung, WooChul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 27
container_start_page
container_title Advanced functional materials
container_volume 30
creator Kim, Jun Hyuk
Kim, Jun Kyu
Seo, Han Gil
Lim, Dae‐Kwang
Jeong, Seung Jin
Seo, Jongsu
Kim, Jinwook
Jung, WooChul
description The electrocatalytic value of nanoparticles has attracted substantial attention in relation to energy conversion devices, including solid oxide fuel cells. Among various forms of analogs, ex‐solved metal nanoparticles originating from their parent oxides display strong particle‐substrate interactions and thus have the benefits of extended durability and of course enhanced catalytic activity. Inspired by recent advances, here, novel air‐electrode materials based on BaCoO3–δ perovskites decorated with socketed Ag nanoparticles are presented. Doping with niobium (Nb5+) and tantalum (Ta5+) can significantly promote the stability of the cubic perovskite phase. The developed oxides exhibit promising performance outcomes in the highly prized low‐to‐intermediate temperature regimes (450–650 °C). Moreover, the exclusion of Ag particles further activates the parent scaffold, thereby conveying record‐level area‐specific resistance (e.g., ≈0.02 Ω cm2 at 650 °C). Coupled with the unique nanoarchitecture, the newly designed cathode showcases in this study hold great promise for future air‐electrodes in fuel cells. BaCoO3−δ perovskites are decorated with ex‐solved Ag nanoparticles to demonstrate the impressive oxygen reduction catalytic activity. The effective tactics incorporated in this study establish a milestone with regards to the road toward exceptional performance outcomes from fuel cell cathodes in the low‐to‐intermediate temperature regimes given the use here of the “parent scaffold‐offspring metal catalyst” as a key skeleton feature.
doi_str_mv 10.1002/adfm.202001326
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2419315282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419315282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3546-bfa2397edce2508106c6c373fe0058e615f25a5e4077e3f5d69a43d02d2895293</originalsourceid><addsrcrecordid>eNqF0LtOwzAUBmALgUQprMyWmFN8iXMZq9JSpEJRCxKbZZzjNlUag51Aw8Qj8Iw8CamKysh0zvD950g_QueU9Cgh7FJlZt1jhBFCOYsOUIdGNAo4YcnhfqdPx-jE-1Vr4piHHeSGm-_Pr7kt3iDD_QW-U6XVqlJF4yuPbYkVnrtWjBwAvlcOygrPtTLGFq2vq6V1-Qe0apwvlkWDh8bkOt-qma0rwNbg6aZZQIlnkNW6ym15io6MKjyc_c4uehwNHwbjYDK9vhn0J4HmIoyCZ6MYT2PINDBBEkoiHWkecwOEiAQiKgwTSkBI4hi4EVmUqpBnhGUsSQVLeRdd7O6-OPtag6_kytaubF9KFtKUU8ES1qreTmlnvXdg5IvL18o1khK57VVue5X7XttAugu85wU0_2jZvxrd_mV_APb1fXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419315282</pqid></control><display><type>article</type><title>Ex‐Solved Ag Nanocatalysts on a Sr‐Free Parent Scaffold Authorize a Highly Efficient Route of Oxygen Reduction</title><source>Wiley Online Library Journals</source><creator>Kim, Jun Hyuk ; Kim, Jun Kyu ; Seo, Han Gil ; Lim, Dae‐Kwang ; Jeong, Seung Jin ; Seo, Jongsu ; Kim, Jinwook ; Jung, WooChul</creator><creatorcontrib>Kim, Jun Hyuk ; Kim, Jun Kyu ; Seo, Han Gil ; Lim, Dae‐Kwang ; Jeong, Seung Jin ; Seo, Jongsu ; Kim, Jinwook ; Jung, WooChul</creatorcontrib><description>The electrocatalytic value of nanoparticles has attracted substantial attention in relation to energy conversion devices, including solid oxide fuel cells. Among various forms of analogs, ex‐solved metal nanoparticles originating from their parent oxides display strong particle‐substrate interactions and thus have the benefits of extended durability and of course enhanced catalytic activity. Inspired by recent advances, here, novel air‐electrode materials based on BaCoO3–δ perovskites decorated with socketed Ag nanoparticles are presented. Doping with niobium (Nb5+) and tantalum (Ta5+) can significantly promote the stability of the cubic perovskite phase. The developed oxides exhibit promising performance outcomes in the highly prized low‐to‐intermediate temperature regimes (450–650 °C). Moreover, the exclusion of Ag particles further activates the parent scaffold, thereby conveying record‐level area‐specific resistance (e.g., ≈0.02 Ω cm2 at 650 °C). Coupled with the unique nanoarchitecture, the newly designed cathode showcases in this study hold great promise for future air‐electrodes in fuel cells. BaCoO3−δ perovskites are decorated with ex‐solved Ag nanoparticles to demonstrate the impressive oxygen reduction catalytic activity. The effective tactics incorporated in this study establish a milestone with regards to the road toward exceptional performance outcomes from fuel cell cathodes in the low‐to‐intermediate temperature regimes given the use here of the “parent scaffold‐offspring metal catalyst” as a key skeleton feature.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202001326</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>BaCoO3−δ ; Catalytic activity ; Electrode materials ; Electrodes ; Energy conversion ; ex‐solution ; Fuel cells ; Materials science ; Nanoparticles ; Niobium ; oxygen reduction reaction ; Perovskites ; Scaffolds ; Silver ; Solid oxide fuel cells ; Substrates ; Tantalum</subject><ispartof>Advanced functional materials, 2020-07, Vol.30 (27), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3546-bfa2397edce2508106c6c373fe0058e615f25a5e4077e3f5d69a43d02d2895293</citedby><cites>FETCH-LOGICAL-c3546-bfa2397edce2508106c6c373fe0058e615f25a5e4077e3f5d69a43d02d2895293</cites><orcidid>0000-0001-5266-3795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202001326$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202001326$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kim, Jun Hyuk</creatorcontrib><creatorcontrib>Kim, Jun Kyu</creatorcontrib><creatorcontrib>Seo, Han Gil</creatorcontrib><creatorcontrib>Lim, Dae‐Kwang</creatorcontrib><creatorcontrib>Jeong, Seung Jin</creatorcontrib><creatorcontrib>Seo, Jongsu</creatorcontrib><creatorcontrib>Kim, Jinwook</creatorcontrib><creatorcontrib>Jung, WooChul</creatorcontrib><title>Ex‐Solved Ag Nanocatalysts on a Sr‐Free Parent Scaffold Authorize a Highly Efficient Route of Oxygen Reduction</title><title>Advanced functional materials</title><description>The electrocatalytic value of nanoparticles has attracted substantial attention in relation to energy conversion devices, including solid oxide fuel cells. Among various forms of analogs, ex‐solved metal nanoparticles originating from their parent oxides display strong particle‐substrate interactions and thus have the benefits of extended durability and of course enhanced catalytic activity. Inspired by recent advances, here, novel air‐electrode materials based on BaCoO3–δ perovskites decorated with socketed Ag nanoparticles are presented. Doping with niobium (Nb5+) and tantalum (Ta5+) can significantly promote the stability of the cubic perovskite phase. The developed oxides exhibit promising performance outcomes in the highly prized low‐to‐intermediate temperature regimes (450–650 °C). Moreover, the exclusion of Ag particles further activates the parent scaffold, thereby conveying record‐level area‐specific resistance (e.g., ≈0.02 Ω cm2 at 650 °C). Coupled with the unique nanoarchitecture, the newly designed cathode showcases in this study hold great promise for future air‐electrodes in fuel cells. BaCoO3−δ perovskites are decorated with ex‐solved Ag nanoparticles to demonstrate the impressive oxygen reduction catalytic activity. The effective tactics incorporated in this study establish a milestone with regards to the road toward exceptional performance outcomes from fuel cell cathodes in the low‐to‐intermediate temperature regimes given the use here of the “parent scaffold‐offspring metal catalyst” as a key skeleton feature.</description><subject>BaCoO3−δ</subject><subject>Catalytic activity</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy conversion</subject><subject>ex‐solution</subject><subject>Fuel cells</subject><subject>Materials science</subject><subject>Nanoparticles</subject><subject>Niobium</subject><subject>oxygen reduction reaction</subject><subject>Perovskites</subject><subject>Scaffolds</subject><subject>Silver</subject><subject>Solid oxide fuel cells</subject><subject>Substrates</subject><subject>Tantalum</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0LtOwzAUBmALgUQprMyWmFN8iXMZq9JSpEJRCxKbZZzjNlUag51Aw8Qj8Iw8CamKysh0zvD950g_QueU9Cgh7FJlZt1jhBFCOYsOUIdGNAo4YcnhfqdPx-jE-1Vr4piHHeSGm-_Pr7kt3iDD_QW-U6XVqlJF4yuPbYkVnrtWjBwAvlcOygrPtTLGFq2vq6V1-Qe0apwvlkWDh8bkOt-qma0rwNbg6aZZQIlnkNW6ym15io6MKjyc_c4uehwNHwbjYDK9vhn0J4HmIoyCZ6MYT2PINDBBEkoiHWkecwOEiAQiKgwTSkBI4hi4EVmUqpBnhGUsSQVLeRdd7O6-OPtag6_kytaubF9KFtKUU8ES1qreTmlnvXdg5IvL18o1khK57VVue5X7XttAugu85wU0_2jZvxrd_mV_APb1fXA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Kim, Jun Hyuk</creator><creator>Kim, Jun Kyu</creator><creator>Seo, Han Gil</creator><creator>Lim, Dae‐Kwang</creator><creator>Jeong, Seung Jin</creator><creator>Seo, Jongsu</creator><creator>Kim, Jinwook</creator><creator>Jung, WooChul</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5266-3795</orcidid></search><sort><creationdate>20200701</creationdate><title>Ex‐Solved Ag Nanocatalysts on a Sr‐Free Parent Scaffold Authorize a Highly Efficient Route of Oxygen Reduction</title><author>Kim, Jun Hyuk ; Kim, Jun Kyu ; Seo, Han Gil ; Lim, Dae‐Kwang ; Jeong, Seung Jin ; Seo, Jongsu ; Kim, Jinwook ; Jung, WooChul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3546-bfa2397edce2508106c6c373fe0058e615f25a5e4077e3f5d69a43d02d2895293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>BaCoO3−δ</topic><topic>Catalytic activity</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy conversion</topic><topic>ex‐solution</topic><topic>Fuel cells</topic><topic>Materials science</topic><topic>Nanoparticles</topic><topic>Niobium</topic><topic>oxygen reduction reaction</topic><topic>Perovskites</topic><topic>Scaffolds</topic><topic>Silver</topic><topic>Solid oxide fuel cells</topic><topic>Substrates</topic><topic>Tantalum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jun Hyuk</creatorcontrib><creatorcontrib>Kim, Jun Kyu</creatorcontrib><creatorcontrib>Seo, Han Gil</creatorcontrib><creatorcontrib>Lim, Dae‐Kwang</creatorcontrib><creatorcontrib>Jeong, Seung Jin</creatorcontrib><creatorcontrib>Seo, Jongsu</creatorcontrib><creatorcontrib>Kim, Jinwook</creatorcontrib><creatorcontrib>Jung, WooChul</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jun Hyuk</au><au>Kim, Jun Kyu</au><au>Seo, Han Gil</au><au>Lim, Dae‐Kwang</au><au>Jeong, Seung Jin</au><au>Seo, Jongsu</au><au>Kim, Jinwook</au><au>Jung, WooChul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ex‐Solved Ag Nanocatalysts on a Sr‐Free Parent Scaffold Authorize a Highly Efficient Route of Oxygen Reduction</atitle><jtitle>Advanced functional materials</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>30</volume><issue>27</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The electrocatalytic value of nanoparticles has attracted substantial attention in relation to energy conversion devices, including solid oxide fuel cells. Among various forms of analogs, ex‐solved metal nanoparticles originating from their parent oxides display strong particle‐substrate interactions and thus have the benefits of extended durability and of course enhanced catalytic activity. Inspired by recent advances, here, novel air‐electrode materials based on BaCoO3–δ perovskites decorated with socketed Ag nanoparticles are presented. Doping with niobium (Nb5+) and tantalum (Ta5+) can significantly promote the stability of the cubic perovskite phase. The developed oxides exhibit promising performance outcomes in the highly prized low‐to‐intermediate temperature regimes (450–650 °C). Moreover, the exclusion of Ag particles further activates the parent scaffold, thereby conveying record‐level area‐specific resistance (e.g., ≈0.02 Ω cm2 at 650 °C). Coupled with the unique nanoarchitecture, the newly designed cathode showcases in this study hold great promise for future air‐electrodes in fuel cells. BaCoO3−δ perovskites are decorated with ex‐solved Ag nanoparticles to demonstrate the impressive oxygen reduction catalytic activity. The effective tactics incorporated in this study establish a milestone with regards to the road toward exceptional performance outcomes from fuel cell cathodes in the low‐to‐intermediate temperature regimes given the use here of the “parent scaffold‐offspring metal catalyst” as a key skeleton feature.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202001326</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5266-3795</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-07, Vol.30 (27), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2419315282
source Wiley Online Library Journals
subjects BaCoO3−δ
Catalytic activity
Electrode materials
Electrodes
Energy conversion
ex‐solution
Fuel cells
Materials science
Nanoparticles
Niobium
oxygen reduction reaction
Perovskites
Scaffolds
Silver
Solid oxide fuel cells
Substrates
Tantalum
title Ex‐Solved Ag Nanocatalysts on a Sr‐Free Parent Scaffold Authorize a Highly Efficient Route of Oxygen Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A12%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ex%E2%80%90Solved%20Ag%20Nanocatalysts%20on%20a%20Sr%E2%80%90Free%20Parent%20Scaffold%20Authorize%20a%20Highly%20Efficient%20Route%20of%20Oxygen%20Reduction&rft.jtitle=Advanced%20functional%20materials&rft.au=Kim,%20Jun%20Hyuk&rft.date=2020-07-01&rft.volume=30&rft.issue=27&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202001326&rft_dat=%3Cproquest_cross%3E2419315282%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419315282&rft_id=info:pmid/&rfr_iscdi=true