Ex‐Solved Ag Nanocatalysts on a Sr‐Free Parent Scaffold Authorize a Highly Efficient Route of Oxygen Reduction
The electrocatalytic value of nanoparticles has attracted substantial attention in relation to energy conversion devices, including solid oxide fuel cells. Among various forms of analogs, ex‐solved metal nanoparticles originating from their parent oxides display strong particle‐substrate interaction...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-07, Vol.30 (27), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 27 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Kim, Jun Hyuk Kim, Jun Kyu Seo, Han Gil Lim, Dae‐Kwang Jeong, Seung Jin Seo, Jongsu Kim, Jinwook Jung, WooChul |
description | The electrocatalytic value of nanoparticles has attracted substantial attention in relation to energy conversion devices, including solid oxide fuel cells. Among various forms of analogs, ex‐solved metal nanoparticles originating from their parent oxides display strong particle‐substrate interactions and thus have the benefits of extended durability and of course enhanced catalytic activity. Inspired by recent advances, here, novel air‐electrode materials based on BaCoO3–δ perovskites decorated with socketed Ag nanoparticles are presented. Doping with niobium (Nb5+) and tantalum (Ta5+) can significantly promote the stability of the cubic perovskite phase. The developed oxides exhibit promising performance outcomes in the highly prized low‐to‐intermediate temperature regimes (450–650 °C). Moreover, the exclusion of Ag particles further activates the parent scaffold, thereby conveying record‐level area‐specific resistance (e.g., ≈0.02 Ω cm2 at 650 °C). Coupled with the unique nanoarchitecture, the newly designed cathode showcases in this study hold great promise for future air‐electrodes in fuel cells.
BaCoO3−δ perovskites are decorated with ex‐solved Ag nanoparticles to demonstrate the impressive oxygen reduction catalytic activity. The effective tactics incorporated in this study establish a milestone with regards to the road toward exceptional performance outcomes from fuel cell cathodes in the low‐to‐intermediate temperature regimes given the use here of the “parent scaffold‐offspring metal catalyst” as a key skeleton feature. |
doi_str_mv | 10.1002/adfm.202001326 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2419315282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419315282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3546-bfa2397edce2508106c6c373fe0058e615f25a5e4077e3f5d69a43d02d2895293</originalsourceid><addsrcrecordid>eNqF0LtOwzAUBmALgUQprMyWmFN8iXMZq9JSpEJRCxKbZZzjNlUag51Aw8Qj8Iw8CamKysh0zvD950g_QueU9Cgh7FJlZt1jhBFCOYsOUIdGNAo4YcnhfqdPx-jE-1Vr4piHHeSGm-_Pr7kt3iDD_QW-U6XVqlJF4yuPbYkVnrtWjBwAvlcOygrPtTLGFq2vq6V1-Qe0apwvlkWDh8bkOt-qma0rwNbg6aZZQIlnkNW6ym15io6MKjyc_c4uehwNHwbjYDK9vhn0J4HmIoyCZ6MYT2PINDBBEkoiHWkecwOEiAQiKgwTSkBI4hi4EVmUqpBnhGUsSQVLeRdd7O6-OPtag6_kytaubF9KFtKUU8ES1qreTmlnvXdg5IvL18o1khK57VVue5X7XttAugu85wU0_2jZvxrd_mV_APb1fXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419315282</pqid></control><display><type>article</type><title>Ex‐Solved Ag Nanocatalysts on a Sr‐Free Parent Scaffold Authorize a Highly Efficient Route of Oxygen Reduction</title><source>Wiley Online Library Journals</source><creator>Kim, Jun Hyuk ; Kim, Jun Kyu ; Seo, Han Gil ; Lim, Dae‐Kwang ; Jeong, Seung Jin ; Seo, Jongsu ; Kim, Jinwook ; Jung, WooChul</creator><creatorcontrib>Kim, Jun Hyuk ; Kim, Jun Kyu ; Seo, Han Gil ; Lim, Dae‐Kwang ; Jeong, Seung Jin ; Seo, Jongsu ; Kim, Jinwook ; Jung, WooChul</creatorcontrib><description>The electrocatalytic value of nanoparticles has attracted substantial attention in relation to energy conversion devices, including solid oxide fuel cells. Among various forms of analogs, ex‐solved metal nanoparticles originating from their parent oxides display strong particle‐substrate interactions and thus have the benefits of extended durability and of course enhanced catalytic activity. Inspired by recent advances, here, novel air‐electrode materials based on BaCoO3–δ perovskites decorated with socketed Ag nanoparticles are presented. Doping with niobium (Nb5+) and tantalum (Ta5+) can significantly promote the stability of the cubic perovskite phase. The developed oxides exhibit promising performance outcomes in the highly prized low‐to‐intermediate temperature regimes (450–650 °C). Moreover, the exclusion of Ag particles further activates the parent scaffold, thereby conveying record‐level area‐specific resistance (e.g., ≈0.02 Ω cm2 at 650 °C). Coupled with the unique nanoarchitecture, the newly designed cathode showcases in this study hold great promise for future air‐electrodes in fuel cells.
BaCoO3−δ perovskites are decorated with ex‐solved Ag nanoparticles to demonstrate the impressive oxygen reduction catalytic activity. The effective tactics incorporated in this study establish a milestone with regards to the road toward exceptional performance outcomes from fuel cell cathodes in the low‐to‐intermediate temperature regimes given the use here of the “parent scaffold‐offspring metal catalyst” as a key skeleton feature.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202001326</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>BaCoO3−δ ; Catalytic activity ; Electrode materials ; Electrodes ; Energy conversion ; ex‐solution ; Fuel cells ; Materials science ; Nanoparticles ; Niobium ; oxygen reduction reaction ; Perovskites ; Scaffolds ; Silver ; Solid oxide fuel cells ; Substrates ; Tantalum</subject><ispartof>Advanced functional materials, 2020-07, Vol.30 (27), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3546-bfa2397edce2508106c6c373fe0058e615f25a5e4077e3f5d69a43d02d2895293</citedby><cites>FETCH-LOGICAL-c3546-bfa2397edce2508106c6c373fe0058e615f25a5e4077e3f5d69a43d02d2895293</cites><orcidid>0000-0001-5266-3795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202001326$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202001326$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kim, Jun Hyuk</creatorcontrib><creatorcontrib>Kim, Jun Kyu</creatorcontrib><creatorcontrib>Seo, Han Gil</creatorcontrib><creatorcontrib>Lim, Dae‐Kwang</creatorcontrib><creatorcontrib>Jeong, Seung Jin</creatorcontrib><creatorcontrib>Seo, Jongsu</creatorcontrib><creatorcontrib>Kim, Jinwook</creatorcontrib><creatorcontrib>Jung, WooChul</creatorcontrib><title>Ex‐Solved Ag Nanocatalysts on a Sr‐Free Parent Scaffold Authorize a Highly Efficient Route of Oxygen Reduction</title><title>Advanced functional materials</title><description>The electrocatalytic value of nanoparticles has attracted substantial attention in relation to energy conversion devices, including solid oxide fuel cells. Among various forms of analogs, ex‐solved metal nanoparticles originating from their parent oxides display strong particle‐substrate interactions and thus have the benefits of extended durability and of course enhanced catalytic activity. Inspired by recent advances, here, novel air‐electrode materials based on BaCoO3–δ perovskites decorated with socketed Ag nanoparticles are presented. Doping with niobium (Nb5+) and tantalum (Ta5+) can significantly promote the stability of the cubic perovskite phase. The developed oxides exhibit promising performance outcomes in the highly prized low‐to‐intermediate temperature regimes (450–650 °C). Moreover, the exclusion of Ag particles further activates the parent scaffold, thereby conveying record‐level area‐specific resistance (e.g., ≈0.02 Ω cm2 at 650 °C). Coupled with the unique nanoarchitecture, the newly designed cathode showcases in this study hold great promise for future air‐electrodes in fuel cells.
BaCoO3−δ perovskites are decorated with ex‐solved Ag nanoparticles to demonstrate the impressive oxygen reduction catalytic activity. The effective tactics incorporated in this study establish a milestone with regards to the road toward exceptional performance outcomes from fuel cell cathodes in the low‐to‐intermediate temperature regimes given the use here of the “parent scaffold‐offspring metal catalyst” as a key skeleton feature.</description><subject>BaCoO3−δ</subject><subject>Catalytic activity</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy conversion</subject><subject>ex‐solution</subject><subject>Fuel cells</subject><subject>Materials science</subject><subject>Nanoparticles</subject><subject>Niobium</subject><subject>oxygen reduction reaction</subject><subject>Perovskites</subject><subject>Scaffolds</subject><subject>Silver</subject><subject>Solid oxide fuel cells</subject><subject>Substrates</subject><subject>Tantalum</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0LtOwzAUBmALgUQprMyWmFN8iXMZq9JSpEJRCxKbZZzjNlUag51Aw8Qj8Iw8CamKysh0zvD950g_QueU9Cgh7FJlZt1jhBFCOYsOUIdGNAo4YcnhfqdPx-jE-1Vr4piHHeSGm-_Pr7kt3iDD_QW-U6XVqlJF4yuPbYkVnrtWjBwAvlcOygrPtTLGFq2vq6V1-Qe0apwvlkWDh8bkOt-qma0rwNbg6aZZQIlnkNW6ym15io6MKjyc_c4uehwNHwbjYDK9vhn0J4HmIoyCZ6MYT2PINDBBEkoiHWkecwOEiAQiKgwTSkBI4hi4EVmUqpBnhGUsSQVLeRdd7O6-OPtag6_kytaubF9KFtKUU8ES1qreTmlnvXdg5IvL18o1khK57VVue5X7XttAugu85wU0_2jZvxrd_mV_APb1fXA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Kim, Jun Hyuk</creator><creator>Kim, Jun Kyu</creator><creator>Seo, Han Gil</creator><creator>Lim, Dae‐Kwang</creator><creator>Jeong, Seung Jin</creator><creator>Seo, Jongsu</creator><creator>Kim, Jinwook</creator><creator>Jung, WooChul</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5266-3795</orcidid></search><sort><creationdate>20200701</creationdate><title>Ex‐Solved Ag Nanocatalysts on a Sr‐Free Parent Scaffold Authorize a Highly Efficient Route of Oxygen Reduction</title><author>Kim, Jun Hyuk ; Kim, Jun Kyu ; Seo, Han Gil ; Lim, Dae‐Kwang ; Jeong, Seung Jin ; Seo, Jongsu ; Kim, Jinwook ; Jung, WooChul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3546-bfa2397edce2508106c6c373fe0058e615f25a5e4077e3f5d69a43d02d2895293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>BaCoO3−δ</topic><topic>Catalytic activity</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy conversion</topic><topic>ex‐solution</topic><topic>Fuel cells</topic><topic>Materials science</topic><topic>Nanoparticles</topic><topic>Niobium</topic><topic>oxygen reduction reaction</topic><topic>Perovskites</topic><topic>Scaffolds</topic><topic>Silver</topic><topic>Solid oxide fuel cells</topic><topic>Substrates</topic><topic>Tantalum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jun Hyuk</creatorcontrib><creatorcontrib>Kim, Jun Kyu</creatorcontrib><creatorcontrib>Seo, Han Gil</creatorcontrib><creatorcontrib>Lim, Dae‐Kwang</creatorcontrib><creatorcontrib>Jeong, Seung Jin</creatorcontrib><creatorcontrib>Seo, Jongsu</creatorcontrib><creatorcontrib>Kim, Jinwook</creatorcontrib><creatorcontrib>Jung, WooChul</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jun Hyuk</au><au>Kim, Jun Kyu</au><au>Seo, Han Gil</au><au>Lim, Dae‐Kwang</au><au>Jeong, Seung Jin</au><au>Seo, Jongsu</au><au>Kim, Jinwook</au><au>Jung, WooChul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ex‐Solved Ag Nanocatalysts on a Sr‐Free Parent Scaffold Authorize a Highly Efficient Route of Oxygen Reduction</atitle><jtitle>Advanced functional materials</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>30</volume><issue>27</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The electrocatalytic value of nanoparticles has attracted substantial attention in relation to energy conversion devices, including solid oxide fuel cells. Among various forms of analogs, ex‐solved metal nanoparticles originating from their parent oxides display strong particle‐substrate interactions and thus have the benefits of extended durability and of course enhanced catalytic activity. Inspired by recent advances, here, novel air‐electrode materials based on BaCoO3–δ perovskites decorated with socketed Ag nanoparticles are presented. Doping with niobium (Nb5+) and tantalum (Ta5+) can significantly promote the stability of the cubic perovskite phase. The developed oxides exhibit promising performance outcomes in the highly prized low‐to‐intermediate temperature regimes (450–650 °C). Moreover, the exclusion of Ag particles further activates the parent scaffold, thereby conveying record‐level area‐specific resistance (e.g., ≈0.02 Ω cm2 at 650 °C). Coupled with the unique nanoarchitecture, the newly designed cathode showcases in this study hold great promise for future air‐electrodes in fuel cells.
BaCoO3−δ perovskites are decorated with ex‐solved Ag nanoparticles to demonstrate the impressive oxygen reduction catalytic activity. The effective tactics incorporated in this study establish a milestone with regards to the road toward exceptional performance outcomes from fuel cell cathodes in the low‐to‐intermediate temperature regimes given the use here of the “parent scaffold‐offspring metal catalyst” as a key skeleton feature.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202001326</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5266-3795</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-07, Vol.30 (27), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2419315282 |
source | Wiley Online Library Journals |
subjects | BaCoO3−δ Catalytic activity Electrode materials Electrodes Energy conversion ex‐solution Fuel cells Materials science Nanoparticles Niobium oxygen reduction reaction Perovskites Scaffolds Silver Solid oxide fuel cells Substrates Tantalum |
title | Ex‐Solved Ag Nanocatalysts on a Sr‐Free Parent Scaffold Authorize a Highly Efficient Route of Oxygen Reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A12%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ex%E2%80%90Solved%20Ag%20Nanocatalysts%20on%20a%20Sr%E2%80%90Free%20Parent%20Scaffold%20Authorize%20a%20Highly%20Efficient%20Route%20of%20Oxygen%20Reduction&rft.jtitle=Advanced%20functional%20materials&rft.au=Kim,%20Jun%20Hyuk&rft.date=2020-07-01&rft.volume=30&rft.issue=27&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202001326&rft_dat=%3Cproquest_cross%3E2419315282%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419315282&rft_id=info:pmid/&rfr_iscdi=true |