Robust Kernel Density Estimation with Median-of-Means principle

In this paper, we introduce a robust nonparametric density estimator combining the popular Kernel Density Estimation method and the Median-of-Means principle (MoM-KDE). This estimator is shown to achieve robustness to any kind of anomalous data, even in the case of adversarial contamination. In part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-06
Hauptverfasser: Humbert, Pierre, Batiste Le Bars, Minvielle, Ludovic, Vayatis, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Humbert, Pierre
Batiste Le Bars
Minvielle, Ludovic
Vayatis, Nicolas
description In this paper, we introduce a robust nonparametric density estimator combining the popular Kernel Density Estimation method and the Median-of-Means principle (MoM-KDE). This estimator is shown to achieve robustness to any kind of anomalous data, even in the case of adversarial contamination. In particular, while previous works only prove consistency results under known contamination model, this work provides finite-sample high-probability error-bounds without a priori knowledge on the outliers. Finally, when compared with other robust kernel estimators, we show that MoM-KDE achieves competitive results while having significant lower computational complexity.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2419237345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419237345</sourcerecordid><originalsourceid>FETCH-proquest_journals_24192373453</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOwScA-2ltTo5aEWQLuJeUr1iSr3UXIr49jr4AE7_8P0TEYHWqVpnADMRM3dJksCqgDzXkdieXTNykCf0hL3cI7ENb1lysA8TrCP5suEuK7xZQ8q1qkJDLAdv6WqHHhdi2pqeMf51LpaH8rI7qsG754gc6s6Nnr5UQ5ZuQBc6y_V_1wf0sDik</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419237345</pqid></control><display><type>article</type><title>Robust Kernel Density Estimation with Median-of-Means principle</title><source>Free E- Journals</source><creator>Humbert, Pierre ; Batiste Le Bars ; Minvielle, Ludovic ; Vayatis, Nicolas</creator><creatorcontrib>Humbert, Pierre ; Batiste Le Bars ; Minvielle, Ludovic ; Vayatis, Nicolas</creatorcontrib><description>In this paper, we introduce a robust nonparametric density estimator combining the popular Kernel Density Estimation method and the Median-of-Means principle (MoM-KDE). This estimator is shown to achieve robustness to any kind of anomalous data, even in the case of adversarial contamination. In particular, while previous works only prove consistency results under known contamination model, this work provides finite-sample high-probability error-bounds without a priori knowledge on the outliers. Finally, when compared with other robust kernel estimators, we show that MoM-KDE achieves competitive results while having significant lower computational complexity.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Contamination ; Density ; Kernels ; Outliers (statistics) ; Robustness</subject><ispartof>arXiv.org, 2020-06</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Humbert, Pierre</creatorcontrib><creatorcontrib>Batiste Le Bars</creatorcontrib><creatorcontrib>Minvielle, Ludovic</creatorcontrib><creatorcontrib>Vayatis, Nicolas</creatorcontrib><title>Robust Kernel Density Estimation with Median-of-Means principle</title><title>arXiv.org</title><description>In this paper, we introduce a robust nonparametric density estimator combining the popular Kernel Density Estimation method and the Median-of-Means principle (MoM-KDE). This estimator is shown to achieve robustness to any kind of anomalous data, even in the case of adversarial contamination. In particular, while previous works only prove consistency results under known contamination model, this work provides finite-sample high-probability error-bounds without a priori knowledge on the outliers. Finally, when compared with other robust kernel estimators, we show that MoM-KDE achieves competitive results while having significant lower computational complexity.</description><subject>Contamination</subject><subject>Density</subject><subject>Kernels</subject><subject>Outliers (statistics)</subject><subject>Robustness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOwScA-2ltTo5aEWQLuJeUr1iSr3UXIr49jr4AE7_8P0TEYHWqVpnADMRM3dJksCqgDzXkdieXTNykCf0hL3cI7ENb1lysA8TrCP5suEuK7xZQ8q1qkJDLAdv6WqHHhdi2pqeMf51LpaH8rI7qsG754gc6s6Nnr5UQ5ZuQBc6y_V_1wf0sDik</recordid><startdate>20200630</startdate><enddate>20200630</enddate><creator>Humbert, Pierre</creator><creator>Batiste Le Bars</creator><creator>Minvielle, Ludovic</creator><creator>Vayatis, Nicolas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200630</creationdate><title>Robust Kernel Density Estimation with Median-of-Means principle</title><author>Humbert, Pierre ; Batiste Le Bars ; Minvielle, Ludovic ; Vayatis, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24192373453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Contamination</topic><topic>Density</topic><topic>Kernels</topic><topic>Outliers (statistics)</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Humbert, Pierre</creatorcontrib><creatorcontrib>Batiste Le Bars</creatorcontrib><creatorcontrib>Minvielle, Ludovic</creatorcontrib><creatorcontrib>Vayatis, Nicolas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Humbert, Pierre</au><au>Batiste Le Bars</au><au>Minvielle, Ludovic</au><au>Vayatis, Nicolas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Robust Kernel Density Estimation with Median-of-Means principle</atitle><jtitle>arXiv.org</jtitle><date>2020-06-30</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this paper, we introduce a robust nonparametric density estimator combining the popular Kernel Density Estimation method and the Median-of-Means principle (MoM-KDE). This estimator is shown to achieve robustness to any kind of anomalous data, even in the case of adversarial contamination. In particular, while previous works only prove consistency results under known contamination model, this work provides finite-sample high-probability error-bounds without a priori knowledge on the outliers. Finally, when compared with other robust kernel estimators, we show that MoM-KDE achieves competitive results while having significant lower computational complexity.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2419237345
source Free E- Journals
subjects Contamination
Density
Kernels
Outliers (statistics)
Robustness
title Robust Kernel Density Estimation with Median-of-Means principle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A16%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Robust%20Kernel%20Density%20Estimation%20with%20Median-of-Means%20principle&rft.jtitle=arXiv.org&rft.au=Humbert,%20Pierre&rft.date=2020-06-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2419237345%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419237345&rft_id=info:pmid/&rfr_iscdi=true