Robust Kernel Density Estimation with Median-of-Means principle
In this paper, we introduce a robust nonparametric density estimator combining the popular Kernel Density Estimation method and the Median-of-Means principle (MoM-KDE). This estimator is shown to achieve robustness to any kind of anomalous data, even in the case of adversarial contamination. In part...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-06 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Humbert, Pierre Batiste Le Bars Minvielle, Ludovic Vayatis, Nicolas |
description | In this paper, we introduce a robust nonparametric density estimator combining the popular Kernel Density Estimation method and the Median-of-Means principle (MoM-KDE). This estimator is shown to achieve robustness to any kind of anomalous data, even in the case of adversarial contamination. In particular, while previous works only prove consistency results under known contamination model, this work provides finite-sample high-probability error-bounds without a priori knowledge on the outliers. Finally, when compared with other robust kernel estimators, we show that MoM-KDE achieves competitive results while having significant lower computational complexity. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2419237345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419237345</sourcerecordid><originalsourceid>FETCH-proquest_journals_24192373453</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOwScA-2ltTo5aEWQLuJeUr1iSr3UXIr49jr4AE7_8P0TEYHWqVpnADMRM3dJksCqgDzXkdieXTNykCf0hL3cI7ENb1lysA8TrCP5suEuK7xZQ8q1qkJDLAdv6WqHHhdi2pqeMf51LpaH8rI7qsG754gc6s6Nnr5UQ5ZuQBc6y_V_1wf0sDik</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419237345</pqid></control><display><type>article</type><title>Robust Kernel Density Estimation with Median-of-Means principle</title><source>Free E- Journals</source><creator>Humbert, Pierre ; Batiste Le Bars ; Minvielle, Ludovic ; Vayatis, Nicolas</creator><creatorcontrib>Humbert, Pierre ; Batiste Le Bars ; Minvielle, Ludovic ; Vayatis, Nicolas</creatorcontrib><description>In this paper, we introduce a robust nonparametric density estimator combining the popular Kernel Density Estimation method and the Median-of-Means principle (MoM-KDE). This estimator is shown to achieve robustness to any kind of anomalous data, even in the case of adversarial contamination. In particular, while previous works only prove consistency results under known contamination model, this work provides finite-sample high-probability error-bounds without a priori knowledge on the outliers. Finally, when compared with other robust kernel estimators, we show that MoM-KDE achieves competitive results while having significant lower computational complexity.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Contamination ; Density ; Kernels ; Outliers (statistics) ; Robustness</subject><ispartof>arXiv.org, 2020-06</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Humbert, Pierre</creatorcontrib><creatorcontrib>Batiste Le Bars</creatorcontrib><creatorcontrib>Minvielle, Ludovic</creatorcontrib><creatorcontrib>Vayatis, Nicolas</creatorcontrib><title>Robust Kernel Density Estimation with Median-of-Means principle</title><title>arXiv.org</title><description>In this paper, we introduce a robust nonparametric density estimator combining the popular Kernel Density Estimation method and the Median-of-Means principle (MoM-KDE). This estimator is shown to achieve robustness to any kind of anomalous data, even in the case of adversarial contamination. In particular, while previous works only prove consistency results under known contamination model, this work provides finite-sample high-probability error-bounds without a priori knowledge on the outliers. Finally, when compared with other robust kernel estimators, we show that MoM-KDE achieves competitive results while having significant lower computational complexity.</description><subject>Contamination</subject><subject>Density</subject><subject>Kernels</subject><subject>Outliers (statistics)</subject><subject>Robustness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOwScA-2ltTo5aEWQLuJeUr1iSr3UXIr49jr4AE7_8P0TEYHWqVpnADMRM3dJksCqgDzXkdieXTNykCf0hL3cI7ENb1lysA8TrCP5suEuK7xZQ8q1qkJDLAdv6WqHHhdi2pqeMf51LpaH8rI7qsG754gc6s6Nnr5UQ5ZuQBc6y_V_1wf0sDik</recordid><startdate>20200630</startdate><enddate>20200630</enddate><creator>Humbert, Pierre</creator><creator>Batiste Le Bars</creator><creator>Minvielle, Ludovic</creator><creator>Vayatis, Nicolas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200630</creationdate><title>Robust Kernel Density Estimation with Median-of-Means principle</title><author>Humbert, Pierre ; Batiste Le Bars ; Minvielle, Ludovic ; Vayatis, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24192373453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Contamination</topic><topic>Density</topic><topic>Kernels</topic><topic>Outliers (statistics)</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Humbert, Pierre</creatorcontrib><creatorcontrib>Batiste Le Bars</creatorcontrib><creatorcontrib>Minvielle, Ludovic</creatorcontrib><creatorcontrib>Vayatis, Nicolas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Humbert, Pierre</au><au>Batiste Le Bars</au><au>Minvielle, Ludovic</au><au>Vayatis, Nicolas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Robust Kernel Density Estimation with Median-of-Means principle</atitle><jtitle>arXiv.org</jtitle><date>2020-06-30</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this paper, we introduce a robust nonparametric density estimator combining the popular Kernel Density Estimation method and the Median-of-Means principle (MoM-KDE). This estimator is shown to achieve robustness to any kind of anomalous data, even in the case of adversarial contamination. In particular, while previous works only prove consistency results under known contamination model, this work provides finite-sample high-probability error-bounds without a priori knowledge on the outliers. Finally, when compared with other robust kernel estimators, we show that MoM-KDE achieves competitive results while having significant lower computational complexity.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2419237345 |
source | Free E- Journals |
subjects | Contamination Density Kernels Outliers (statistics) Robustness |
title | Robust Kernel Density Estimation with Median-of-Means principle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A16%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Robust%20Kernel%20Density%20Estimation%20with%20Median-of-Means%20principle&rft.jtitle=arXiv.org&rft.au=Humbert,%20Pierre&rft.date=2020-06-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2419237345%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419237345&rft_id=info:pmid/&rfr_iscdi=true |