GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding
Neural network scaling has been critical for improving the model quality in many real-world machine learning applications with vast amounts of training data and compute. Although this trend of scaling is affirmed to be a sure-fire approach for better model quality, there are challenges on the path s...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-06 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lepikhin, Dmitry Lee, HyoukJoong Xu, Yuanzhong Chen, Dehao Firat, Orhan Huang, Yanping Krikun, Maxim Shazeer, Noam Chen, Zhifeng |
description | Neural network scaling has been critical for improving the model quality in many real-world machine learning applications with vast amounts of training data and compute. Although this trend of scaling is affirmed to be a sure-fire approach for better model quality, there are challenges on the path such as the computation cost, ease of programming, and efficient implementation on parallel devices. GShard is a module composed of a set of lightweight annotation APIs and an extension to the XLA compiler. It provides an elegant way to express a wide range of parallel computation patterns with minimal changes to the existing model code. GShard enabled us to scale up multilingual neural machine translation Transformer model with Sparsely-Gated Mixture-of-Experts beyond 600 billion parameters using automatic sharding. We demonstrate that such a giant model can efficiently be trained on 2048 TPU v3 accelerators in 4 days to achieve far superior quality for translation from 100 languages to English compared to the prior art. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2419237339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419237339</sourcerecordid><originalsourceid>FETCH-proquest_journals_24192373393</originalsourceid><addsrcrecordid>eNqNjNEKgjAYRkcQJOU7_NC1oP80s7uQspsgqHsZznIyN3MbvX4reoCuvu_A4cxIgJQm0TZFXJDQmD6OY9zkmGU0IJfq2rGJ7-DaMCnUAyrBlIWz5q008BK2g1IrLqzQikn_h9FZ9iFgisPeWT14bOCb8YEVmd-ZNG342yVZHw-38hSNk3661ti6127yLVNjmhRIc0oL-p_1Bh6RPqM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419237339</pqid></control><display><type>article</type><title>GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding</title><source>Free E- Journals</source><creator>Lepikhin, Dmitry ; Lee, HyoukJoong ; Xu, Yuanzhong ; Chen, Dehao ; Firat, Orhan ; Huang, Yanping ; Krikun, Maxim ; Shazeer, Noam ; Chen, Zhifeng</creator><creatorcontrib>Lepikhin, Dmitry ; Lee, HyoukJoong ; Xu, Yuanzhong ; Chen, Dehao ; Firat, Orhan ; Huang, Yanping ; Krikun, Maxim ; Shazeer, Noam ; Chen, Zhifeng</creatorcontrib><description>Neural network scaling has been critical for improving the model quality in many real-world machine learning applications with vast amounts of training data and compute. Although this trend of scaling is affirmed to be a sure-fire approach for better model quality, there are challenges on the path such as the computation cost, ease of programming, and efficient implementation on parallel devices. GShard is a module composed of a set of lightweight annotation APIs and an extension to the XLA compiler. It provides an elegant way to express a wide range of parallel computation patterns with minimal changes to the existing model code. GShard enabled us to scale up multilingual neural machine translation Transformer model with Sparsely-Gated Mixture-of-Experts beyond 600 billion parameters using automatic sharding. We demonstrate that such a giant model can efficiently be trained on 2048 TPU v3 accelerators in 4 days to achieve far superior quality for translation from 100 languages to English compared to the prior art.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accelerators ; Annotations ; Machine learning ; Machine translation ; Neural networks ; Parallel processing</subject><ispartof>arXiv.org, 2020-06</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Lepikhin, Dmitry</creatorcontrib><creatorcontrib>Lee, HyoukJoong</creatorcontrib><creatorcontrib>Xu, Yuanzhong</creatorcontrib><creatorcontrib>Chen, Dehao</creatorcontrib><creatorcontrib>Firat, Orhan</creatorcontrib><creatorcontrib>Huang, Yanping</creatorcontrib><creatorcontrib>Krikun, Maxim</creatorcontrib><creatorcontrib>Shazeer, Noam</creatorcontrib><creatorcontrib>Chen, Zhifeng</creatorcontrib><title>GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding</title><title>arXiv.org</title><description>Neural network scaling has been critical for improving the model quality in many real-world machine learning applications with vast amounts of training data and compute. Although this trend of scaling is affirmed to be a sure-fire approach for better model quality, there are challenges on the path such as the computation cost, ease of programming, and efficient implementation on parallel devices. GShard is a module composed of a set of lightweight annotation APIs and an extension to the XLA compiler. It provides an elegant way to express a wide range of parallel computation patterns with minimal changes to the existing model code. GShard enabled us to scale up multilingual neural machine translation Transformer model with Sparsely-Gated Mixture-of-Experts beyond 600 billion parameters using automatic sharding. We demonstrate that such a giant model can efficiently be trained on 2048 TPU v3 accelerators in 4 days to achieve far superior quality for translation from 100 languages to English compared to the prior art.</description><subject>Accelerators</subject><subject>Annotations</subject><subject>Machine learning</subject><subject>Machine translation</subject><subject>Neural networks</subject><subject>Parallel processing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjNEKgjAYRkcQJOU7_NC1oP80s7uQspsgqHsZznIyN3MbvX4reoCuvu_A4cxIgJQm0TZFXJDQmD6OY9zkmGU0IJfq2rGJ7-DaMCnUAyrBlIWz5q008BK2g1IrLqzQikn_h9FZ9iFgisPeWT14bOCb8YEVmd-ZNG342yVZHw-38hSNk3661ti6127yLVNjmhRIc0oL-p_1Bh6RPqM</recordid><startdate>20200630</startdate><enddate>20200630</enddate><creator>Lepikhin, Dmitry</creator><creator>Lee, HyoukJoong</creator><creator>Xu, Yuanzhong</creator><creator>Chen, Dehao</creator><creator>Firat, Orhan</creator><creator>Huang, Yanping</creator><creator>Krikun, Maxim</creator><creator>Shazeer, Noam</creator><creator>Chen, Zhifeng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200630</creationdate><title>GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding</title><author>Lepikhin, Dmitry ; Lee, HyoukJoong ; Xu, Yuanzhong ; Chen, Dehao ; Firat, Orhan ; Huang, Yanping ; Krikun, Maxim ; Shazeer, Noam ; Chen, Zhifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24192373393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerators</topic><topic>Annotations</topic><topic>Machine learning</topic><topic>Machine translation</topic><topic>Neural networks</topic><topic>Parallel processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Lepikhin, Dmitry</creatorcontrib><creatorcontrib>Lee, HyoukJoong</creatorcontrib><creatorcontrib>Xu, Yuanzhong</creatorcontrib><creatorcontrib>Chen, Dehao</creatorcontrib><creatorcontrib>Firat, Orhan</creatorcontrib><creatorcontrib>Huang, Yanping</creatorcontrib><creatorcontrib>Krikun, Maxim</creatorcontrib><creatorcontrib>Shazeer, Noam</creatorcontrib><creatorcontrib>Chen, Zhifeng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lepikhin, Dmitry</au><au>Lee, HyoukJoong</au><au>Xu, Yuanzhong</au><au>Chen, Dehao</au><au>Firat, Orhan</au><au>Huang, Yanping</au><au>Krikun, Maxim</au><au>Shazeer, Noam</au><au>Chen, Zhifeng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding</atitle><jtitle>arXiv.org</jtitle><date>2020-06-30</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Neural network scaling has been critical for improving the model quality in many real-world machine learning applications with vast amounts of training data and compute. Although this trend of scaling is affirmed to be a sure-fire approach for better model quality, there are challenges on the path such as the computation cost, ease of programming, and efficient implementation on parallel devices. GShard is a module composed of a set of lightweight annotation APIs and an extension to the XLA compiler. It provides an elegant way to express a wide range of parallel computation patterns with minimal changes to the existing model code. GShard enabled us to scale up multilingual neural machine translation Transformer model with Sparsely-Gated Mixture-of-Experts beyond 600 billion parameters using automatic sharding. We demonstrate that such a giant model can efficiently be trained on 2048 TPU v3 accelerators in 4 days to achieve far superior quality for translation from 100 languages to English compared to the prior art.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2419237339 |
source | Free E- Journals |
subjects | Accelerators Annotations Machine learning Machine translation Neural networks Parallel processing |
title | GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=GShard:%20Scaling%20Giant%20Models%20with%20Conditional%20Computation%20and%20Automatic%20Sharding&rft.jtitle=arXiv.org&rft.au=Lepikhin,%20Dmitry&rft.date=2020-06-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2419237339%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419237339&rft_id=info:pmid/&rfr_iscdi=true |