Structural dynamics of incommensurate charge-density waves tracked by ultrafast low-energy electron diffraction

We study the non-equilibrium structural dynamics of the incommensurate and nearly commensurate charge-density wave (CDW) phases in 1T- TaS 2. Employing ultrafast low-energy electron diffraction with 1 ps temporal resolution, we investigate the ultrafast quench and recovery of the CDW-coupled periodi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural dynamics (Melville, N.Y.) N.Y.), 2020-05, Vol.7 (3), p.034304-034304-15
Hauptverfasser: Storeck, G., Horstmann, J. G., Diekmann, T., Vogelgesang, S., von Witte, G., Yalunin, S. V., Rossnagel, K., Ropers, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 034304-15
container_issue 3
container_start_page 034304
container_title Structural dynamics (Melville, N.Y.)
container_volume 7
creator Storeck, G.
Horstmann, J. G.
Diekmann, T.
Vogelgesang, S.
von Witte, G.
Yalunin, S. V.
Rossnagel, K.
Ropers, C.
description We study the non-equilibrium structural dynamics of the incommensurate and nearly commensurate charge-density wave (CDW) phases in 1T- TaS 2. Employing ultrafast low-energy electron diffraction with 1 ps temporal resolution, we investigate the ultrafast quench and recovery of the CDW-coupled periodic lattice distortion (PLD). Sequential structural relaxation processes are observed by tracking the intensities of main lattice as well as satellite diffraction peaks and the diffuse scattering background. Comparing distinct groups of diffraction peaks, we disentangle the ultrafast quench of the PLD amplitude from phonon-related reductions of the diffraction intensity. Fluence-dependent relaxation cycles reveal a long-lived partial suppression of the order parameter for up to 60 ps, far outlasting the initial amplitude recovery and electron-phonon scattering times. This delayed return to a quasi-thermal level is controlled by lattice thermalization and coincides with the population of zone-center acoustic modes, as evidenced by a structured diffuse background. The long-lived non-equilibrium order parameter suppression suggests hot populations of CDW-coupled lattice modes. Finally, a broadening of the superlattice peaks is observed at high fluences, pointing to a non-linear generation of phase fluctuations.
doi_str_mv 10.1063/4.0000018
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2419162481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2babf8fcd1a544e5b20aaaa9a37e21df</doaj_id><sourcerecordid>2419162481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-8bd5318c88904144841d963a1b22259c844dd861ea5f7c0960c77d834ecd6e463</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhiMEolXpgT-ALHECKSX-SOxckFAFbaVKHICz5djjrZfEXmxnq_x7vN1laYWYi-2ZR--846mq17i5wE1HP7CLZhdYPKtOCSV9zTkXzx_dT6rzlNY7BJOWM_qyOqGk7TuG2WkVvuU46zxHNSKzeDU5nVCwyHkdpgl8KpUMSN-puILalITLC7pXW0goR6V_gkHDguaxPKxKGY3hvgYPcbUgGEHnGDwyztrCZhf8q-qFVWOC88N5Vv348vn75XV9-_Xq5vLTba1b2udaDKalWGgh-qb4ZIJh03dU4YGQ4l0LxowRHQbVWq6bvms050ZQBtp0wDp6Vt3sdU1Qa7mJblJxkUE5-ZAIcSVVzE6PIMmgBiusNli1jEE7kEaV6BXlQLCxRevjXmszDxMYDb4MOz4RfVrx7k6uwlZyijHmfRF4exCI4dcMKct1mKMv80vCcI87wgQu1Ls9pWNIKYI9dsCN3K1aMnlYdWHfPLZ0JP8stgDv90DSLqvdzx-ZbYh_leTmYcD_wv-2_g0QOcIr</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419162481</pqid></control><display><type>article</type><title>Structural dynamics of incommensurate charge-density waves tracked by ultrafast low-energy electron diffraction</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Storeck, G. ; Horstmann, J. G. ; Diekmann, T. ; Vogelgesang, S. ; von Witte, G. ; Yalunin, S. V. ; Rossnagel, K. ; Ropers, C.</creator><creatorcontrib>Storeck, G. ; Horstmann, J. G. ; Diekmann, T. ; Vogelgesang, S. ; von Witte, G. ; Yalunin, S. V. ; Rossnagel, K. ; Ropers, C.</creatorcontrib><description>We study the non-equilibrium structural dynamics of the incommensurate and nearly commensurate charge-density wave (CDW) phases in 1T- TaS 2. Employing ultrafast low-energy electron diffraction with 1 ps temporal resolution, we investigate the ultrafast quench and recovery of the CDW-coupled periodic lattice distortion (PLD). Sequential structural relaxation processes are observed by tracking the intensities of main lattice as well as satellite diffraction peaks and the diffuse scattering background. Comparing distinct groups of diffraction peaks, we disentangle the ultrafast quench of the PLD amplitude from phonon-related reductions of the diffraction intensity. Fluence-dependent relaxation cycles reveal a long-lived partial suppression of the order parameter for up to 60 ps, far outlasting the initial amplitude recovery and electron-phonon scattering times. This delayed return to a quasi-thermal level is controlled by lattice thermalization and coincides with the population of zone-center acoustic modes, as evidenced by a structured diffuse background. The long-lived non-equilibrium order parameter suppression suggests hot populations of CDW-coupled lattice modes. Finally, a broadening of the superlattice peaks is observed at high fluences, pointing to a non-linear generation of phase fluctuations.</description><identifier>ISSN: 2329-7778</identifier><identifier>EISSN: 2329-7778</identifier><identifier>DOI: 10.1063/4.0000018</identifier><identifier>PMID: 32596414</identifier><identifier>CODEN: SDTYAE</identifier><language>eng</language><publisher>United States: American Institute of Physics, Inc</publisher><subject>Amplitudes ; Charge density waves ; Coupled modes ; Dynamic structural analysis ; Electrons ; Fluence ; Lasers ; Lattice vibration ; Low energy electron diffraction ; Measurement techniques ; Order parameters ; Phase transitions ; Phonons ; Physics ; Recovery ; Satellites ; Scattering ; Sulfur ; Superlattices ; Symmetry ; Temporal resolution ; Thermalization (energy absorption) ; Wave diffraction</subject><ispartof>Structural dynamics (Melville, N.Y.), 2020-05, Vol.7 (3), p.034304-034304-15</ispartof><rights>Author(s)</rights><rights>2020 Author(s).</rights><rights>2020 Author(s). This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Author(s). 2020 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-8bd5318c88904144841d963a1b22259c844dd861ea5f7c0960c77d834ecd6e463</citedby><cites>FETCH-LOGICAL-c539t-8bd5318c88904144841d963a1b22259c844dd861ea5f7c0960c77d834ecd6e463</cites><orcidid>0000-0002-3338-9134 ; 0000-0002-9539-3817 ; 0000-0001-5107-0090 ; 0000-0001-5323-6306 ; 0000-0003-3698-9829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7311179/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7311179/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32596414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Storeck, G.</creatorcontrib><creatorcontrib>Horstmann, J. G.</creatorcontrib><creatorcontrib>Diekmann, T.</creatorcontrib><creatorcontrib>Vogelgesang, S.</creatorcontrib><creatorcontrib>von Witte, G.</creatorcontrib><creatorcontrib>Yalunin, S. V.</creatorcontrib><creatorcontrib>Rossnagel, K.</creatorcontrib><creatorcontrib>Ropers, C.</creatorcontrib><title>Structural dynamics of incommensurate charge-density waves tracked by ultrafast low-energy electron diffraction</title><title>Structural dynamics (Melville, N.Y.)</title><addtitle>Struct Dyn</addtitle><description>We study the non-equilibrium structural dynamics of the incommensurate and nearly commensurate charge-density wave (CDW) phases in 1T- TaS 2. Employing ultrafast low-energy electron diffraction with 1 ps temporal resolution, we investigate the ultrafast quench and recovery of the CDW-coupled periodic lattice distortion (PLD). Sequential structural relaxation processes are observed by tracking the intensities of main lattice as well as satellite diffraction peaks and the diffuse scattering background. Comparing distinct groups of diffraction peaks, we disentangle the ultrafast quench of the PLD amplitude from phonon-related reductions of the diffraction intensity. Fluence-dependent relaxation cycles reveal a long-lived partial suppression of the order parameter for up to 60 ps, far outlasting the initial amplitude recovery and electron-phonon scattering times. This delayed return to a quasi-thermal level is controlled by lattice thermalization and coincides with the population of zone-center acoustic modes, as evidenced by a structured diffuse background. The long-lived non-equilibrium order parameter suppression suggests hot populations of CDW-coupled lattice modes. Finally, a broadening of the superlattice peaks is observed at high fluences, pointing to a non-linear generation of phase fluctuations.</description><subject>Amplitudes</subject><subject>Charge density waves</subject><subject>Coupled modes</subject><subject>Dynamic structural analysis</subject><subject>Electrons</subject><subject>Fluence</subject><subject>Lasers</subject><subject>Lattice vibration</subject><subject>Low energy electron diffraction</subject><subject>Measurement techniques</subject><subject>Order parameters</subject><subject>Phase transitions</subject><subject>Phonons</subject><subject>Physics</subject><subject>Recovery</subject><subject>Satellites</subject><subject>Scattering</subject><subject>Sulfur</subject><subject>Superlattices</subject><subject>Symmetry</subject><subject>Temporal resolution</subject><subject>Thermalization (energy absorption)</subject><subject>Wave diffraction</subject><issn>2329-7778</issn><issn>2329-7778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1kU1v1DAQhiMEolXpgT-ALHECKSX-SOxckFAFbaVKHICz5djjrZfEXmxnq_x7vN1laYWYi-2ZR--846mq17i5wE1HP7CLZhdYPKtOCSV9zTkXzx_dT6rzlNY7BJOWM_qyOqGk7TuG2WkVvuU46zxHNSKzeDU5nVCwyHkdpgl8KpUMSN-puILalITLC7pXW0goR6V_gkHDguaxPKxKGY3hvgYPcbUgGEHnGDwyztrCZhf8q-qFVWOC88N5Vv348vn75XV9-_Xq5vLTba1b2udaDKalWGgh-qb4ZIJh03dU4YGQ4l0LxowRHQbVWq6bvms050ZQBtp0wDp6Vt3sdU1Qa7mJblJxkUE5-ZAIcSVVzE6PIMmgBiusNli1jEE7kEaV6BXlQLCxRevjXmszDxMYDb4MOz4RfVrx7k6uwlZyijHmfRF4exCI4dcMKct1mKMv80vCcI87wgQu1Ls9pWNIKYI9dsCN3K1aMnlYdWHfPLZ0JP8stgDv90DSLqvdzx-ZbYh_leTmYcD_wv-2_g0QOcIr</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Storeck, G.</creator><creator>Horstmann, J. G.</creator><creator>Diekmann, T.</creator><creator>Vogelgesang, S.</creator><creator>von Witte, G.</creator><creator>Yalunin, S. V.</creator><creator>Rossnagel, K.</creator><creator>Ropers, C.</creator><general>American Institute of Physics, Inc</general><general>American Crystallographic Association</general><general>AIP Publishing LLC and ACA</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3338-9134</orcidid><orcidid>https://orcid.org/0000-0002-9539-3817</orcidid><orcidid>https://orcid.org/0000-0001-5107-0090</orcidid><orcidid>https://orcid.org/0000-0001-5323-6306</orcidid><orcidid>https://orcid.org/0000-0003-3698-9829</orcidid></search><sort><creationdate>20200501</creationdate><title>Structural dynamics of incommensurate charge-density waves tracked by ultrafast low-energy electron diffraction</title><author>Storeck, G. ; Horstmann, J. G. ; Diekmann, T. ; Vogelgesang, S. ; von Witte, G. ; Yalunin, S. V. ; Rossnagel, K. ; Ropers, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-8bd5318c88904144841d963a1b22259c844dd861ea5f7c0960c77d834ecd6e463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitudes</topic><topic>Charge density waves</topic><topic>Coupled modes</topic><topic>Dynamic structural analysis</topic><topic>Electrons</topic><topic>Fluence</topic><topic>Lasers</topic><topic>Lattice vibration</topic><topic>Low energy electron diffraction</topic><topic>Measurement techniques</topic><topic>Order parameters</topic><topic>Phase transitions</topic><topic>Phonons</topic><topic>Physics</topic><topic>Recovery</topic><topic>Satellites</topic><topic>Scattering</topic><topic>Sulfur</topic><topic>Superlattices</topic><topic>Symmetry</topic><topic>Temporal resolution</topic><topic>Thermalization (energy absorption)</topic><topic>Wave diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Storeck, G.</creatorcontrib><creatorcontrib>Horstmann, J. G.</creatorcontrib><creatorcontrib>Diekmann, T.</creatorcontrib><creatorcontrib>Vogelgesang, S.</creatorcontrib><creatorcontrib>von Witte, G.</creatorcontrib><creatorcontrib>Yalunin, S. V.</creatorcontrib><creatorcontrib>Rossnagel, K.</creatorcontrib><creatorcontrib>Ropers, C.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Structural dynamics (Melville, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Storeck, G.</au><au>Horstmann, J. G.</au><au>Diekmann, T.</au><au>Vogelgesang, S.</au><au>von Witte, G.</au><au>Yalunin, S. V.</au><au>Rossnagel, K.</au><au>Ropers, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural dynamics of incommensurate charge-density waves tracked by ultrafast low-energy electron diffraction</atitle><jtitle>Structural dynamics (Melville, N.Y.)</jtitle><addtitle>Struct Dyn</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>7</volume><issue>3</issue><spage>034304</spage><epage>034304-15</epage><pages>034304-034304-15</pages><issn>2329-7778</issn><eissn>2329-7778</eissn><coden>SDTYAE</coden><abstract>We study the non-equilibrium structural dynamics of the incommensurate and nearly commensurate charge-density wave (CDW) phases in 1T- TaS 2. Employing ultrafast low-energy electron diffraction with 1 ps temporal resolution, we investigate the ultrafast quench and recovery of the CDW-coupled periodic lattice distortion (PLD). Sequential structural relaxation processes are observed by tracking the intensities of main lattice as well as satellite diffraction peaks and the diffuse scattering background. Comparing distinct groups of diffraction peaks, we disentangle the ultrafast quench of the PLD amplitude from phonon-related reductions of the diffraction intensity. Fluence-dependent relaxation cycles reveal a long-lived partial suppression of the order parameter for up to 60 ps, far outlasting the initial amplitude recovery and electron-phonon scattering times. This delayed return to a quasi-thermal level is controlled by lattice thermalization and coincides with the population of zone-center acoustic modes, as evidenced by a structured diffuse background. The long-lived non-equilibrium order parameter suppression suggests hot populations of CDW-coupled lattice modes. Finally, a broadening of the superlattice peaks is observed at high fluences, pointing to a non-linear generation of phase fluctuations.</abstract><cop>United States</cop><pub>American Institute of Physics, Inc</pub><pmid>32596414</pmid><doi>10.1063/4.0000018</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3338-9134</orcidid><orcidid>https://orcid.org/0000-0002-9539-3817</orcidid><orcidid>https://orcid.org/0000-0001-5107-0090</orcidid><orcidid>https://orcid.org/0000-0001-5323-6306</orcidid><orcidid>https://orcid.org/0000-0003-3698-9829</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2329-7778
ispartof Structural dynamics (Melville, N.Y.), 2020-05, Vol.7 (3), p.034304-034304-15
issn 2329-7778
2329-7778
language eng
recordid cdi_proquest_journals_2419162481
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Amplitudes
Charge density waves
Coupled modes
Dynamic structural analysis
Electrons
Fluence
Lasers
Lattice vibration
Low energy electron diffraction
Measurement techniques
Order parameters
Phase transitions
Phonons
Physics
Recovery
Satellites
Scattering
Sulfur
Superlattices
Symmetry
Temporal resolution
Thermalization (energy absorption)
Wave diffraction
title Structural dynamics of incommensurate charge-density waves tracked by ultrafast low-energy electron diffraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A04%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20dynamics%20of%20incommensurate%20charge-density%20waves%20tracked%20by%20ultrafast%20low-energy%20electron%20diffraction&rft.jtitle=Structural%20dynamics%20(Melville,%20N.Y.)&rft.au=Storeck,%20G.&rft.date=2020-05-01&rft.volume=7&rft.issue=3&rft.spage=034304&rft.epage=034304-15&rft.pages=034304-034304-15&rft.issn=2329-7778&rft.eissn=2329-7778&rft.coden=SDTYAE&rft_id=info:doi/10.1063/4.0000018&rft_dat=%3Cproquest_pubme%3E2419162481%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419162481&rft_id=info:pmid/32596414&rft_doaj_id=oai_doaj_org_article_2babf8fcd1a544e5b20aaaa9a37e21df&rfr_iscdi=true