Regioisomer-manipulating thio-perylenediimide nanoagents for photothermal/photodynamic theranostics
Thionated perylenediimides (PDIs) can potentially generate thermal and reactive oxygen species and thus can be used as theranostic agents for photothermal/photodynamic therapy. Herein, thionated cis -/ trans -isomer PDI-CS and PDI-TS were designed and prepared to investigate thionation engineering o...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2020-07, Vol.8 (25), p.5535-5544 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5544 |
---|---|
container_issue | 25 |
container_start_page | 5535 |
container_title | Journal of materials chemistry. B, Materials for biology and medicine |
container_volume | 8 |
creator | Liu, Zhonghua Gao, Yijian Jin, Xin Deng, Qingyuan Yin, Zengle Tong, Shuaihang Qing, Weixia Huang, Yongwei |
description | Thionated perylenediimides (PDIs) can potentially generate thermal and reactive oxygen species and thus can be used as theranostic agents for photothermal/photodynamic therapy. Herein, thionated
cis
-/
trans
-isomer PDI-CS and PDI-TS were designed and prepared to investigate thionation engineering on therapeutic performance. The results revealed that the photodynamic performance is less associated with the positon of sulfur atoms. By contrast,
trans
-isomer PDI-TS showed a photothermal conversion efficiency of up to 58.4%, which was 40% higher than that of PDI-CS (∼41.6%). An
in vitro
half-maximal inhibitory concentration of ∼7.78 μg mL
−1
was achieved for PDI-TS, which was 1.7-fold smaller than that of PDI-CS, strongly reasserting the regioisomer-modulated phototheranostic performance. Notably, the strong π-π and C S interactions in PDI-TS nanoagents are essential factors attributed to their excellent photothermal performance, indicating that the optimization of non-bonding interactions is an ingenious way to improve phototheranostic performance. This work provides a facile means of creating thio-perylenediimides that possess excellent antitumor properties and a novel proof of concept to improve therapeutic performance through the optimization of non-bonding interactions.
This work presents a facile means of accessing thio-perylenediimides that not only possess excellent antitumor property but provide a novel proof-of-concept means to improve therapeutic performance
via
the optimization of non-bonding interactions. |
doi_str_mv | 10.1039/d0tb00566e |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2419115771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419115771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-d3210a053326a0e41df68a00a9a4e9872b3ce6cbf648153f05f2788b1f9658253</originalsourceid><addsrcrecordid>eNp90c9LHTEQB_Agior10rtlpZdSWJ1sNtnssbW2FQRBFHpbstnJe5HdZJtkD--_b_TpK_TQXCY_PgzDN4S8p3BBgbWXA6QegAuBe-S4Ag5lw6nc3-3h1xE5jfEJ8pJUSFYfkiNW1S2XlB0TfY8r6230E4ZyUs7Oy6iSdasira0vZwybER0O1k52wMIp59UKXYqF8aGY1z75tMYwqfHy5TBsnJqsLp4vs43J6viOHBg1Rjx9rSfk8fv1w9XP8vbux83Vl9tSM8FSObCKggLOWCUUYE0HI6QCUK2qsZVN1TONQvdG1JJyZoCbqpGyp6YVXFacnZBP275z8L8XjKmbbNQ4jsqhX2JX1dCKmoKsM_34D33yS3B5uqxoSylvGprV563SwccY0HRzsJMKm45C95x-9w0evr6kf53xh9eWSz_hsKNvWWdwvgUh6t3r3-_r5sFkc_Y_w_4AK26Vyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419115771</pqid></control><display><type>article</type><title>Regioisomer-manipulating thio-perylenediimide nanoagents for photothermal/photodynamic theranostics</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Liu, Zhonghua ; Gao, Yijian ; Jin, Xin ; Deng, Qingyuan ; Yin, Zengle ; Tong, Shuaihang ; Qing, Weixia ; Huang, Yongwei</creator><creatorcontrib>Liu, Zhonghua ; Gao, Yijian ; Jin, Xin ; Deng, Qingyuan ; Yin, Zengle ; Tong, Shuaihang ; Qing, Weixia ; Huang, Yongwei</creatorcontrib><description>Thionated perylenediimides (PDIs) can potentially generate thermal and reactive oxygen species and thus can be used as theranostic agents for photothermal/photodynamic therapy. Herein, thionated
cis
-/
trans
-isomer PDI-CS and PDI-TS were designed and prepared to investigate thionation engineering on therapeutic performance. The results revealed that the photodynamic performance is less associated with the positon of sulfur atoms. By contrast,
trans
-isomer PDI-TS showed a photothermal conversion efficiency of up to 58.4%, which was 40% higher than that of PDI-CS (∼41.6%). An
in vitro
half-maximal inhibitory concentration of ∼7.78 μg mL
−1
was achieved for PDI-TS, which was 1.7-fold smaller than that of PDI-CS, strongly reasserting the regioisomer-modulated phototheranostic performance. Notably, the strong π-π and C S interactions in PDI-TS nanoagents are essential factors attributed to their excellent photothermal performance, indicating that the optimization of non-bonding interactions is an ingenious way to improve phototheranostic performance. This work provides a facile means of creating thio-perylenediimides that possess excellent antitumor properties and a novel proof of concept to improve therapeutic performance through the optimization of non-bonding interactions.
This work presents a facile means of accessing thio-perylenediimides that not only possess excellent antitumor property but provide a novel proof-of-concept means to improve therapeutic performance
via
the optimization of non-bonding interactions.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d0tb00566e</identifier><identifier>PMID: 32495813</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>A549 Cells ; Animals ; Anticancer properties ; Antineoplastic Agents - chemical synthesis ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Bonding ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Drug Screening Assays, Antitumor ; Humans ; Imides - chemical synthesis ; Imides - chemistry ; Imides - pharmacology ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Molecular Structure ; Nanoparticles - chemistry ; Neoplasms, Experimental - drug therapy ; Neoplasms, Experimental - metabolism ; Neoplasms, Experimental - pathology ; Optical Imaging ; Optimization ; Particle Size ; Perylene - analogs & derivatives ; Perylene - chemical synthesis ; Perylene - chemistry ; Perylene - pharmacology ; Photochemotherapy ; Photodynamic therapy ; Photothermal conversion ; Photothermal Therapy ; Precision medicine ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Stereoisomerism ; Sulfhydryl Compounds - chemical synthesis ; Sulfhydryl Compounds - chemistry ; Sulfhydryl Compounds - pharmacology ; Sulfur ; Surface Properties ; Theranostic Nanomedicine ; Tumor Cells, Cultured</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2020-07, Vol.8 (25), p.5535-5544</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-d3210a053326a0e41df68a00a9a4e9872b3ce6cbf648153f05f2788b1f9658253</citedby><cites>FETCH-LOGICAL-c363t-d3210a053326a0e41df68a00a9a4e9872b3ce6cbf648153f05f2788b1f9658253</cites><orcidid>0000-0002-0572-8282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32495813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Zhonghua</creatorcontrib><creatorcontrib>Gao, Yijian</creatorcontrib><creatorcontrib>Jin, Xin</creatorcontrib><creatorcontrib>Deng, Qingyuan</creatorcontrib><creatorcontrib>Yin, Zengle</creatorcontrib><creatorcontrib>Tong, Shuaihang</creatorcontrib><creatorcontrib>Qing, Weixia</creatorcontrib><creatorcontrib>Huang, Yongwei</creatorcontrib><title>Regioisomer-manipulating thio-perylenediimide nanoagents for photothermal/photodynamic theranostics</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>Thionated perylenediimides (PDIs) can potentially generate thermal and reactive oxygen species and thus can be used as theranostic agents for photothermal/photodynamic therapy. Herein, thionated
cis
-/
trans
-isomer PDI-CS and PDI-TS were designed and prepared to investigate thionation engineering on therapeutic performance. The results revealed that the photodynamic performance is less associated with the positon of sulfur atoms. By contrast,
trans
-isomer PDI-TS showed a photothermal conversion efficiency of up to 58.4%, which was 40% higher than that of PDI-CS (∼41.6%). An
in vitro
half-maximal inhibitory concentration of ∼7.78 μg mL
−1
was achieved for PDI-TS, which was 1.7-fold smaller than that of PDI-CS, strongly reasserting the regioisomer-modulated phototheranostic performance. Notably, the strong π-π and C S interactions in PDI-TS nanoagents are essential factors attributed to their excellent photothermal performance, indicating that the optimization of non-bonding interactions is an ingenious way to improve phototheranostic performance. This work provides a facile means of creating thio-perylenediimides that possess excellent antitumor properties and a novel proof of concept to improve therapeutic performance through the optimization of non-bonding interactions.
This work presents a facile means of accessing thio-perylenediimides that not only possess excellent antitumor property but provide a novel proof-of-concept means to improve therapeutic performance
via
the optimization of non-bonding interactions.</description><subject>A549 Cells</subject><subject>Animals</subject><subject>Anticancer properties</subject><subject>Antineoplastic Agents - chemical synthesis</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Bonding</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Drug Screening Assays, Antitumor</subject><subject>Humans</subject><subject>Imides - chemical synthesis</subject><subject>Imides - chemistry</subject><subject>Imides - pharmacology</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Molecular Structure</subject><subject>Nanoparticles - chemistry</subject><subject>Neoplasms, Experimental - drug therapy</subject><subject>Neoplasms, Experimental - metabolism</subject><subject>Neoplasms, Experimental - pathology</subject><subject>Optical Imaging</subject><subject>Optimization</subject><subject>Particle Size</subject><subject>Perylene - analogs & derivatives</subject><subject>Perylene - chemical synthesis</subject><subject>Perylene - chemistry</subject><subject>Perylene - pharmacology</subject><subject>Photochemotherapy</subject><subject>Photodynamic therapy</subject><subject>Photothermal conversion</subject><subject>Photothermal Therapy</subject><subject>Precision medicine</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Stereoisomerism</subject><subject>Sulfhydryl Compounds - chemical synthesis</subject><subject>Sulfhydryl Compounds - chemistry</subject><subject>Sulfhydryl Compounds - pharmacology</subject><subject>Sulfur</subject><subject>Surface Properties</subject><subject>Theranostic Nanomedicine</subject><subject>Tumor Cells, Cultured</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90c9LHTEQB_Agior10rtlpZdSWJ1sNtnssbW2FQRBFHpbstnJe5HdZJtkD--_b_TpK_TQXCY_PgzDN4S8p3BBgbWXA6QegAuBe-S4Ag5lw6nc3-3h1xE5jfEJ8pJUSFYfkiNW1S2XlB0TfY8r6230E4ZyUs7Oy6iSdasira0vZwybER0O1k52wMIp59UKXYqF8aGY1z75tMYwqfHy5TBsnJqsLp4vs43J6viOHBg1Rjx9rSfk8fv1w9XP8vbux83Vl9tSM8FSObCKggLOWCUUYE0HI6QCUK2qsZVN1TONQvdG1JJyZoCbqpGyp6YVXFacnZBP275z8L8XjKmbbNQ4jsqhX2JX1dCKmoKsM_34D33yS3B5uqxoSylvGprV563SwccY0HRzsJMKm45C95x-9w0evr6kf53xh9eWSz_hsKNvWWdwvgUh6t3r3-_r5sFkc_Y_w_4AK26Vyw</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Liu, Zhonghua</creator><creator>Gao, Yijian</creator><creator>Jin, Xin</creator><creator>Deng, Qingyuan</creator><creator>Yin, Zengle</creator><creator>Tong, Shuaihang</creator><creator>Qing, Weixia</creator><creator>Huang, Yongwei</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0572-8282</orcidid></search><sort><creationdate>20200701</creationdate><title>Regioisomer-manipulating thio-perylenediimide nanoagents for photothermal/photodynamic theranostics</title><author>Liu, Zhonghua ; Gao, Yijian ; Jin, Xin ; Deng, Qingyuan ; Yin, Zengle ; Tong, Shuaihang ; Qing, Weixia ; Huang, Yongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-d3210a053326a0e41df68a00a9a4e9872b3ce6cbf648153f05f2788b1f9658253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A549 Cells</topic><topic>Animals</topic><topic>Anticancer properties</topic><topic>Antineoplastic Agents - chemical synthesis</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Bonding</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Drug Screening Assays, Antitumor</topic><topic>Humans</topic><topic>Imides - chemical synthesis</topic><topic>Imides - chemistry</topic><topic>Imides - pharmacology</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Molecular Structure</topic><topic>Nanoparticles - chemistry</topic><topic>Neoplasms, Experimental - drug therapy</topic><topic>Neoplasms, Experimental - metabolism</topic><topic>Neoplasms, Experimental - pathology</topic><topic>Optical Imaging</topic><topic>Optimization</topic><topic>Particle Size</topic><topic>Perylene - analogs & derivatives</topic><topic>Perylene - chemical synthesis</topic><topic>Perylene - chemistry</topic><topic>Perylene - pharmacology</topic><topic>Photochemotherapy</topic><topic>Photodynamic therapy</topic><topic>Photothermal conversion</topic><topic>Photothermal Therapy</topic><topic>Precision medicine</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Stereoisomerism</topic><topic>Sulfhydryl Compounds - chemical synthesis</topic><topic>Sulfhydryl Compounds - chemistry</topic><topic>Sulfhydryl Compounds - pharmacology</topic><topic>Sulfur</topic><topic>Surface Properties</topic><topic>Theranostic Nanomedicine</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhonghua</creatorcontrib><creatorcontrib>Gao, Yijian</creatorcontrib><creatorcontrib>Jin, Xin</creatorcontrib><creatorcontrib>Deng, Qingyuan</creatorcontrib><creatorcontrib>Yin, Zengle</creatorcontrib><creatorcontrib>Tong, Shuaihang</creatorcontrib><creatorcontrib>Qing, Weixia</creatorcontrib><creatorcontrib>Huang, Yongwei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhonghua</au><au>Gao, Yijian</au><au>Jin, Xin</au><au>Deng, Qingyuan</au><au>Yin, Zengle</au><au>Tong, Shuaihang</au><au>Qing, Weixia</au><au>Huang, Yongwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regioisomer-manipulating thio-perylenediimide nanoagents for photothermal/photodynamic theranostics</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>8</volume><issue>25</issue><spage>5535</spage><epage>5544</epage><pages>5535-5544</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>Thionated perylenediimides (PDIs) can potentially generate thermal and reactive oxygen species and thus can be used as theranostic agents for photothermal/photodynamic therapy. Herein, thionated
cis
-/
trans
-isomer PDI-CS and PDI-TS were designed and prepared to investigate thionation engineering on therapeutic performance. The results revealed that the photodynamic performance is less associated with the positon of sulfur atoms. By contrast,
trans
-isomer PDI-TS showed a photothermal conversion efficiency of up to 58.4%, which was 40% higher than that of PDI-CS (∼41.6%). An
in vitro
half-maximal inhibitory concentration of ∼7.78 μg mL
−1
was achieved for PDI-TS, which was 1.7-fold smaller than that of PDI-CS, strongly reasserting the regioisomer-modulated phototheranostic performance. Notably, the strong π-π and C S interactions in PDI-TS nanoagents are essential factors attributed to their excellent photothermal performance, indicating that the optimization of non-bonding interactions is an ingenious way to improve phototheranostic performance. This work provides a facile means of creating thio-perylenediimides that possess excellent antitumor properties and a novel proof of concept to improve therapeutic performance through the optimization of non-bonding interactions.
This work presents a facile means of accessing thio-perylenediimides that not only possess excellent antitumor property but provide a novel proof-of-concept means to improve therapeutic performance
via
the optimization of non-bonding interactions.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32495813</pmid><doi>10.1039/d0tb00566e</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0572-8282</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-750X |
ispartof | Journal of materials chemistry. B, Materials for biology and medicine, 2020-07, Vol.8 (25), p.5535-5544 |
issn | 2050-750X 2050-7518 |
language | eng |
recordid | cdi_proquest_journals_2419115771 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008- |
subjects | A549 Cells Animals Anticancer properties Antineoplastic Agents - chemical synthesis Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Bonding Cell Proliferation - drug effects Cell Survival - drug effects Drug Screening Assays, Antitumor Humans Imides - chemical synthesis Imides - chemistry Imides - pharmacology Mice Mice, Inbred BALB C Mice, Nude Molecular Structure Nanoparticles - chemistry Neoplasms, Experimental - drug therapy Neoplasms, Experimental - metabolism Neoplasms, Experimental - pathology Optical Imaging Optimization Particle Size Perylene - analogs & derivatives Perylene - chemical synthesis Perylene - chemistry Perylene - pharmacology Photochemotherapy Photodynamic therapy Photothermal conversion Photothermal Therapy Precision medicine Reactive oxygen species Reactive Oxygen Species - metabolism Stereoisomerism Sulfhydryl Compounds - chemical synthesis Sulfhydryl Compounds - chemistry Sulfhydryl Compounds - pharmacology Sulfur Surface Properties Theranostic Nanomedicine Tumor Cells, Cultured |
title | Regioisomer-manipulating thio-perylenediimide nanoagents for photothermal/photodynamic theranostics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regioisomer-manipulating%20thio-perylenediimide%20nanoagents%20for%20photothermal/photodynamic%20theranostics&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Liu,%20Zhonghua&rft.date=2020-07-01&rft.volume=8&rft.issue=25&rft.spage=5535&rft.epage=5544&rft.pages=5535-5544&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d0tb00566e&rft_dat=%3Cproquest_pubme%3E2419115771%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419115771&rft_id=info:pmid/32495813&rfr_iscdi=true |