Regioisomer-manipulating thio-perylenediimide nanoagents for photothermal/photodynamic theranostics

Thionated perylenediimides (PDIs) can potentially generate thermal and reactive oxygen species and thus can be used as theranostic agents for photothermal/photodynamic therapy. Herein, thionated cis -/ trans -isomer PDI-CS and PDI-TS were designed and prepared to investigate thionation engineering o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2020-07, Vol.8 (25), p.5535-5544
Hauptverfasser: Liu, Zhonghua, Gao, Yijian, Jin, Xin, Deng, Qingyuan, Yin, Zengle, Tong, Shuaihang, Qing, Weixia, Huang, Yongwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5544
container_issue 25
container_start_page 5535
container_title Journal of materials chemistry. B, Materials for biology and medicine
container_volume 8
creator Liu, Zhonghua
Gao, Yijian
Jin, Xin
Deng, Qingyuan
Yin, Zengle
Tong, Shuaihang
Qing, Weixia
Huang, Yongwei
description Thionated perylenediimides (PDIs) can potentially generate thermal and reactive oxygen species and thus can be used as theranostic agents for photothermal/photodynamic therapy. Herein, thionated cis -/ trans -isomer PDI-CS and PDI-TS were designed and prepared to investigate thionation engineering on therapeutic performance. The results revealed that the photodynamic performance is less associated with the positon of sulfur atoms. By contrast, trans -isomer PDI-TS showed a photothermal conversion efficiency of up to 58.4%, which was 40% higher than that of PDI-CS (∼41.6%). An in vitro half-maximal inhibitory concentration of ∼7.78 μg mL −1 was achieved for PDI-TS, which was 1.7-fold smaller than that of PDI-CS, strongly reasserting the regioisomer-modulated phototheranostic performance. Notably, the strong π-π and C S interactions in PDI-TS nanoagents are essential factors attributed to their excellent photothermal performance, indicating that the optimization of non-bonding interactions is an ingenious way to improve phototheranostic performance. This work provides a facile means of creating thio-perylenediimides that possess excellent antitumor properties and a novel proof of concept to improve therapeutic performance through the optimization of non-bonding interactions. This work presents a facile means of accessing thio-perylenediimides that not only possess excellent antitumor property but provide a novel proof-of-concept means to improve therapeutic performance via the optimization of non-bonding interactions.
doi_str_mv 10.1039/d0tb00566e
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2419115771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419115771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-d3210a053326a0e41df68a00a9a4e9872b3ce6cbf648153f05f2788b1f9658253</originalsourceid><addsrcrecordid>eNp90c9LHTEQB_Agior10rtlpZdSWJ1sNtnssbW2FQRBFHpbstnJe5HdZJtkD--_b_TpK_TQXCY_PgzDN4S8p3BBgbWXA6QegAuBe-S4Ag5lw6nc3-3h1xE5jfEJ8pJUSFYfkiNW1S2XlB0TfY8r6230E4ZyUs7Oy6iSdasira0vZwybER0O1k52wMIp59UKXYqF8aGY1z75tMYwqfHy5TBsnJqsLp4vs43J6viOHBg1Rjx9rSfk8fv1w9XP8vbux83Vl9tSM8FSObCKggLOWCUUYE0HI6QCUK2qsZVN1TONQvdG1JJyZoCbqpGyp6YVXFacnZBP275z8L8XjKmbbNQ4jsqhX2JX1dCKmoKsM_34D33yS3B5uqxoSylvGprV563SwccY0HRzsJMKm45C95x-9w0evr6kf53xh9eWSz_hsKNvWWdwvgUh6t3r3-_r5sFkc_Y_w_4AK26Vyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419115771</pqid></control><display><type>article</type><title>Regioisomer-manipulating thio-perylenediimide nanoagents for photothermal/photodynamic theranostics</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Liu, Zhonghua ; Gao, Yijian ; Jin, Xin ; Deng, Qingyuan ; Yin, Zengle ; Tong, Shuaihang ; Qing, Weixia ; Huang, Yongwei</creator><creatorcontrib>Liu, Zhonghua ; Gao, Yijian ; Jin, Xin ; Deng, Qingyuan ; Yin, Zengle ; Tong, Shuaihang ; Qing, Weixia ; Huang, Yongwei</creatorcontrib><description>Thionated perylenediimides (PDIs) can potentially generate thermal and reactive oxygen species and thus can be used as theranostic agents for photothermal/photodynamic therapy. Herein, thionated cis -/ trans -isomer PDI-CS and PDI-TS were designed and prepared to investigate thionation engineering on therapeutic performance. The results revealed that the photodynamic performance is less associated with the positon of sulfur atoms. By contrast, trans -isomer PDI-TS showed a photothermal conversion efficiency of up to 58.4%, which was 40% higher than that of PDI-CS (∼41.6%). An in vitro half-maximal inhibitory concentration of ∼7.78 μg mL −1 was achieved for PDI-TS, which was 1.7-fold smaller than that of PDI-CS, strongly reasserting the regioisomer-modulated phototheranostic performance. Notably, the strong π-π and C S interactions in PDI-TS nanoagents are essential factors attributed to their excellent photothermal performance, indicating that the optimization of non-bonding interactions is an ingenious way to improve phototheranostic performance. This work provides a facile means of creating thio-perylenediimides that possess excellent antitumor properties and a novel proof of concept to improve therapeutic performance through the optimization of non-bonding interactions. This work presents a facile means of accessing thio-perylenediimides that not only possess excellent antitumor property but provide a novel proof-of-concept means to improve therapeutic performance via the optimization of non-bonding interactions.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d0tb00566e</identifier><identifier>PMID: 32495813</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>A549 Cells ; Animals ; Anticancer properties ; Antineoplastic Agents - chemical synthesis ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Bonding ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Drug Screening Assays, Antitumor ; Humans ; Imides - chemical synthesis ; Imides - chemistry ; Imides - pharmacology ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Molecular Structure ; Nanoparticles - chemistry ; Neoplasms, Experimental - drug therapy ; Neoplasms, Experimental - metabolism ; Neoplasms, Experimental - pathology ; Optical Imaging ; Optimization ; Particle Size ; Perylene - analogs &amp; derivatives ; Perylene - chemical synthesis ; Perylene - chemistry ; Perylene - pharmacology ; Photochemotherapy ; Photodynamic therapy ; Photothermal conversion ; Photothermal Therapy ; Precision medicine ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Stereoisomerism ; Sulfhydryl Compounds - chemical synthesis ; Sulfhydryl Compounds - chemistry ; Sulfhydryl Compounds - pharmacology ; Sulfur ; Surface Properties ; Theranostic Nanomedicine ; Tumor Cells, Cultured</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2020-07, Vol.8 (25), p.5535-5544</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-d3210a053326a0e41df68a00a9a4e9872b3ce6cbf648153f05f2788b1f9658253</citedby><cites>FETCH-LOGICAL-c363t-d3210a053326a0e41df68a00a9a4e9872b3ce6cbf648153f05f2788b1f9658253</cites><orcidid>0000-0002-0572-8282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32495813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Zhonghua</creatorcontrib><creatorcontrib>Gao, Yijian</creatorcontrib><creatorcontrib>Jin, Xin</creatorcontrib><creatorcontrib>Deng, Qingyuan</creatorcontrib><creatorcontrib>Yin, Zengle</creatorcontrib><creatorcontrib>Tong, Shuaihang</creatorcontrib><creatorcontrib>Qing, Weixia</creatorcontrib><creatorcontrib>Huang, Yongwei</creatorcontrib><title>Regioisomer-manipulating thio-perylenediimide nanoagents for photothermal/photodynamic theranostics</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>Thionated perylenediimides (PDIs) can potentially generate thermal and reactive oxygen species and thus can be used as theranostic agents for photothermal/photodynamic therapy. Herein, thionated cis -/ trans -isomer PDI-CS and PDI-TS were designed and prepared to investigate thionation engineering on therapeutic performance. The results revealed that the photodynamic performance is less associated with the positon of sulfur atoms. By contrast, trans -isomer PDI-TS showed a photothermal conversion efficiency of up to 58.4%, which was 40% higher than that of PDI-CS (∼41.6%). An in vitro half-maximal inhibitory concentration of ∼7.78 μg mL −1 was achieved for PDI-TS, which was 1.7-fold smaller than that of PDI-CS, strongly reasserting the regioisomer-modulated phototheranostic performance. Notably, the strong π-π and C S interactions in PDI-TS nanoagents are essential factors attributed to their excellent photothermal performance, indicating that the optimization of non-bonding interactions is an ingenious way to improve phototheranostic performance. This work provides a facile means of creating thio-perylenediimides that possess excellent antitumor properties and a novel proof of concept to improve therapeutic performance through the optimization of non-bonding interactions. This work presents a facile means of accessing thio-perylenediimides that not only possess excellent antitumor property but provide a novel proof-of-concept means to improve therapeutic performance via the optimization of non-bonding interactions.</description><subject>A549 Cells</subject><subject>Animals</subject><subject>Anticancer properties</subject><subject>Antineoplastic Agents - chemical synthesis</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Bonding</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Drug Screening Assays, Antitumor</subject><subject>Humans</subject><subject>Imides - chemical synthesis</subject><subject>Imides - chemistry</subject><subject>Imides - pharmacology</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Molecular Structure</subject><subject>Nanoparticles - chemistry</subject><subject>Neoplasms, Experimental - drug therapy</subject><subject>Neoplasms, Experimental - metabolism</subject><subject>Neoplasms, Experimental - pathology</subject><subject>Optical Imaging</subject><subject>Optimization</subject><subject>Particle Size</subject><subject>Perylene - analogs &amp; derivatives</subject><subject>Perylene - chemical synthesis</subject><subject>Perylene - chemistry</subject><subject>Perylene - pharmacology</subject><subject>Photochemotherapy</subject><subject>Photodynamic therapy</subject><subject>Photothermal conversion</subject><subject>Photothermal Therapy</subject><subject>Precision medicine</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Stereoisomerism</subject><subject>Sulfhydryl Compounds - chemical synthesis</subject><subject>Sulfhydryl Compounds - chemistry</subject><subject>Sulfhydryl Compounds - pharmacology</subject><subject>Sulfur</subject><subject>Surface Properties</subject><subject>Theranostic Nanomedicine</subject><subject>Tumor Cells, Cultured</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90c9LHTEQB_Agior10rtlpZdSWJ1sNtnssbW2FQRBFHpbstnJe5HdZJtkD--_b_TpK_TQXCY_PgzDN4S8p3BBgbWXA6QegAuBe-S4Ag5lw6nc3-3h1xE5jfEJ8pJUSFYfkiNW1S2XlB0TfY8r6230E4ZyUs7Oy6iSdasira0vZwybER0O1k52wMIp59UKXYqF8aGY1z75tMYwqfHy5TBsnJqsLp4vs43J6viOHBg1Rjx9rSfk8fv1w9XP8vbux83Vl9tSM8FSObCKggLOWCUUYE0HI6QCUK2qsZVN1TONQvdG1JJyZoCbqpGyp6YVXFacnZBP275z8L8XjKmbbNQ4jsqhX2JX1dCKmoKsM_34D33yS3B5uqxoSylvGprV563SwccY0HRzsJMKm45C95x-9w0evr6kf53xh9eWSz_hsKNvWWdwvgUh6t3r3-_r5sFkc_Y_w_4AK26Vyw</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Liu, Zhonghua</creator><creator>Gao, Yijian</creator><creator>Jin, Xin</creator><creator>Deng, Qingyuan</creator><creator>Yin, Zengle</creator><creator>Tong, Shuaihang</creator><creator>Qing, Weixia</creator><creator>Huang, Yongwei</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0572-8282</orcidid></search><sort><creationdate>20200701</creationdate><title>Regioisomer-manipulating thio-perylenediimide nanoagents for photothermal/photodynamic theranostics</title><author>Liu, Zhonghua ; Gao, Yijian ; Jin, Xin ; Deng, Qingyuan ; Yin, Zengle ; Tong, Shuaihang ; Qing, Weixia ; Huang, Yongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-d3210a053326a0e41df68a00a9a4e9872b3ce6cbf648153f05f2788b1f9658253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A549 Cells</topic><topic>Animals</topic><topic>Anticancer properties</topic><topic>Antineoplastic Agents - chemical synthesis</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Bonding</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Drug Screening Assays, Antitumor</topic><topic>Humans</topic><topic>Imides - chemical synthesis</topic><topic>Imides - chemistry</topic><topic>Imides - pharmacology</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Molecular Structure</topic><topic>Nanoparticles - chemistry</topic><topic>Neoplasms, Experimental - drug therapy</topic><topic>Neoplasms, Experimental - metabolism</topic><topic>Neoplasms, Experimental - pathology</topic><topic>Optical Imaging</topic><topic>Optimization</topic><topic>Particle Size</topic><topic>Perylene - analogs &amp; derivatives</topic><topic>Perylene - chemical synthesis</topic><topic>Perylene - chemistry</topic><topic>Perylene - pharmacology</topic><topic>Photochemotherapy</topic><topic>Photodynamic therapy</topic><topic>Photothermal conversion</topic><topic>Photothermal Therapy</topic><topic>Precision medicine</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Stereoisomerism</topic><topic>Sulfhydryl Compounds - chemical synthesis</topic><topic>Sulfhydryl Compounds - chemistry</topic><topic>Sulfhydryl Compounds - pharmacology</topic><topic>Sulfur</topic><topic>Surface Properties</topic><topic>Theranostic Nanomedicine</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhonghua</creatorcontrib><creatorcontrib>Gao, Yijian</creatorcontrib><creatorcontrib>Jin, Xin</creatorcontrib><creatorcontrib>Deng, Qingyuan</creatorcontrib><creatorcontrib>Yin, Zengle</creatorcontrib><creatorcontrib>Tong, Shuaihang</creatorcontrib><creatorcontrib>Qing, Weixia</creatorcontrib><creatorcontrib>Huang, Yongwei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhonghua</au><au>Gao, Yijian</au><au>Jin, Xin</au><au>Deng, Qingyuan</au><au>Yin, Zengle</au><au>Tong, Shuaihang</au><au>Qing, Weixia</au><au>Huang, Yongwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regioisomer-manipulating thio-perylenediimide nanoagents for photothermal/photodynamic theranostics</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>8</volume><issue>25</issue><spage>5535</spage><epage>5544</epage><pages>5535-5544</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>Thionated perylenediimides (PDIs) can potentially generate thermal and reactive oxygen species and thus can be used as theranostic agents for photothermal/photodynamic therapy. Herein, thionated cis -/ trans -isomer PDI-CS and PDI-TS were designed and prepared to investigate thionation engineering on therapeutic performance. The results revealed that the photodynamic performance is less associated with the positon of sulfur atoms. By contrast, trans -isomer PDI-TS showed a photothermal conversion efficiency of up to 58.4%, which was 40% higher than that of PDI-CS (∼41.6%). An in vitro half-maximal inhibitory concentration of ∼7.78 μg mL −1 was achieved for PDI-TS, which was 1.7-fold smaller than that of PDI-CS, strongly reasserting the regioisomer-modulated phototheranostic performance. Notably, the strong π-π and C S interactions in PDI-TS nanoagents are essential factors attributed to their excellent photothermal performance, indicating that the optimization of non-bonding interactions is an ingenious way to improve phototheranostic performance. This work provides a facile means of creating thio-perylenediimides that possess excellent antitumor properties and a novel proof of concept to improve therapeutic performance through the optimization of non-bonding interactions. This work presents a facile means of accessing thio-perylenediimides that not only possess excellent antitumor property but provide a novel proof-of-concept means to improve therapeutic performance via the optimization of non-bonding interactions.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32495813</pmid><doi>10.1039/d0tb00566e</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0572-8282</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-750X
ispartof Journal of materials chemistry. B, Materials for biology and medicine, 2020-07, Vol.8 (25), p.5535-5544
issn 2050-750X
2050-7518
language eng
recordid cdi_proquest_journals_2419115771
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects A549 Cells
Animals
Anticancer properties
Antineoplastic Agents - chemical synthesis
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Bonding
Cell Proliferation - drug effects
Cell Survival - drug effects
Drug Screening Assays, Antitumor
Humans
Imides - chemical synthesis
Imides - chemistry
Imides - pharmacology
Mice
Mice, Inbred BALB C
Mice, Nude
Molecular Structure
Nanoparticles - chemistry
Neoplasms, Experimental - drug therapy
Neoplasms, Experimental - metabolism
Neoplasms, Experimental - pathology
Optical Imaging
Optimization
Particle Size
Perylene - analogs & derivatives
Perylene - chemical synthesis
Perylene - chemistry
Perylene - pharmacology
Photochemotherapy
Photodynamic therapy
Photothermal conversion
Photothermal Therapy
Precision medicine
Reactive oxygen species
Reactive Oxygen Species - metabolism
Stereoisomerism
Sulfhydryl Compounds - chemical synthesis
Sulfhydryl Compounds - chemistry
Sulfhydryl Compounds - pharmacology
Sulfur
Surface Properties
Theranostic Nanomedicine
Tumor Cells, Cultured
title Regioisomer-manipulating thio-perylenediimide nanoagents for photothermal/photodynamic theranostics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regioisomer-manipulating%20thio-perylenediimide%20nanoagents%20for%20photothermal/photodynamic%20theranostics&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Liu,%20Zhonghua&rft.date=2020-07-01&rft.volume=8&rft.issue=25&rft.spage=5535&rft.epage=5544&rft.pages=5535-5544&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d0tb00566e&rft_dat=%3Cproquest_pubme%3E2419115771%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419115771&rft_id=info:pmid/32495813&rfr_iscdi=true