Ultrathin ZnIn2S4 Nanosheets Anchored on Ti3C2TX MXene for Photocatalytic H2 Evolution
Photocatalysts derived from semiconductor heterojunctions that harvest solar energy and catalyze reactions still suffer from low solar‐to‐hydrogen conversion efficiency. Now, MXene (Ti3C2TX) nanosheets (MNs) are used to support the in situ growth of ultrathin ZnIn2S4 nanosheets (UZNs), producing san...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2020-07, Vol.59 (28), p.11287-11292 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11292 |
---|---|
container_issue | 28 |
container_start_page | 11287 |
container_title | Angewandte Chemie International Edition |
container_volume | 59 |
creator | Zuo, Gancheng Wang, Yuting Teo, Wei Liang Xie, Aming Guo, Yang Dai, Yuxuan Zhou, Weiqiang Jana, Deblin Xian, Qiming Dong, Wei Zhao, Yanli |
description | Photocatalysts derived from semiconductor heterojunctions that harvest solar energy and catalyze reactions still suffer from low solar‐to‐hydrogen conversion efficiency. Now, MXene (Ti3C2TX) nanosheets (MNs) are used to support the in situ growth of ultrathin ZnIn2S4 nanosheets (UZNs), producing sandwich‐like hierarchical heterostructures (UZNs‐MNs‐UZNs) for efficient photocatalytic H2 evolution. Opportune lateral epitaxy of UZNs on the surface of MNs improves specific surface area, pore diameter, and hydrophilicity of the resulting materials, all of which could be beneficial to the photocatalytic activity. Owing to the Schottky junction and ultrathin 2D structures of UZNs and MNs, the heterostructures could effectively suppress photoexcited electron–hole recombination and boost photoexcited charge transfer and separation. The heterostructure photocatalyst exhibits improved photocatalytic H2 evolution performance (6.6 times higher than pristine ZnIn2S4) and excellent stability.
MXene nanosheets are used to support the in situ growth of ultrathin ZnIn2S4. The obtained sandwich‐like hierarchical heterostructure could effectively suppress photoexcited electron–hole recombination and boost photoexcited charge transfer and separation, exhibiting efficient photocatalytic H2 evolution performance and excellent stability. |
doi_str_mv | 10.1002/anie.202002136 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2418957099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418957099</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1856-8ce39fa486752159f98630dc946d6456ccc559cb7b6230fca7959ac7c94d2f613</originalsourceid><addsrcrecordid>eNo9kEtLAzEURoMoWKtb1wHXU_OYvJalVFuoVbCV4iakmYwzZUzqTGrpvzel0tX9Lhy-ezkA3GM0wAiRR-NrNyCIpIwpvwA9zAjOqBD0MuWc0kxIhq_BTddtEiMl4j3wsWxia2JVe_jpp56853BufOgq52IHh95WoXUFDB4uajoiixV8WTnvYBla-FaFGKyJpjnE2sIJgePf0OxiHfwtuCpN07m7_9kHy6fxYjTJZq_P09Fwln1hyXgmraOqNLnkIv3KVKkkp6iwKucFzxm31jKm7FqsOaGotEYopowVCShIyTHtg4dT77YNPzvXRb0Ju9ank5rkWComkFKJUidqXzfuoLdt_W3ag8ZIH8Xpozh9FqeH8-n4vNE_9lZiVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418957099</pqid></control><display><type>article</type><title>Ultrathin ZnIn2S4 Nanosheets Anchored on Ti3C2TX MXene for Photocatalytic H2 Evolution</title><source>Wiley Online Library All Journals</source><creator>Zuo, Gancheng ; Wang, Yuting ; Teo, Wei Liang ; Xie, Aming ; Guo, Yang ; Dai, Yuxuan ; Zhou, Weiqiang ; Jana, Deblin ; Xian, Qiming ; Dong, Wei ; Zhao, Yanli</creator><creatorcontrib>Zuo, Gancheng ; Wang, Yuting ; Teo, Wei Liang ; Xie, Aming ; Guo, Yang ; Dai, Yuxuan ; Zhou, Weiqiang ; Jana, Deblin ; Xian, Qiming ; Dong, Wei ; Zhao, Yanli</creatorcontrib><description>Photocatalysts derived from semiconductor heterojunctions that harvest solar energy and catalyze reactions still suffer from low solar‐to‐hydrogen conversion efficiency. Now, MXene (Ti3C2TX) nanosheets (MNs) are used to support the in situ growth of ultrathin ZnIn2S4 nanosheets (UZNs), producing sandwich‐like hierarchical heterostructures (UZNs‐MNs‐UZNs) for efficient photocatalytic H2 evolution. Opportune lateral epitaxy of UZNs on the surface of MNs improves specific surface area, pore diameter, and hydrophilicity of the resulting materials, all of which could be beneficial to the photocatalytic activity. Owing to the Schottky junction and ultrathin 2D structures of UZNs and MNs, the heterostructures could effectively suppress photoexcited electron–hole recombination and boost photoexcited charge transfer and separation. The heterostructure photocatalyst exhibits improved photocatalytic H2 evolution performance (6.6 times higher than pristine ZnIn2S4) and excellent stability.
MXene nanosheets are used to support the in situ growth of ultrathin ZnIn2S4. The obtained sandwich‐like hierarchical heterostructure could effectively suppress photoexcited electron–hole recombination and boost photoexcited charge transfer and separation, exhibiting efficient photocatalytic H2 evolution performance and excellent stability.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202002136</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalytic activity ; Charge transfer ; Chemical reactions ; Energy harvesting ; Evolution ; Heterojunctions ; Heterostructures ; Hydrogen evolution ; MXene ; MXenes ; Nanosheets ; Photocatalysis ; Photocatalysts ; photocatalytic H2 evolution ; photoexcited charge separation ; Recombination ; Solar energy ; two-dimensional heterostructures ; ZnIn2S4 nanosheets</subject><ispartof>Angewandte Chemie International Edition, 2020-07, Vol.59 (28), p.11287-11292</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9231-8360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202002136$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202002136$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zuo, Gancheng</creatorcontrib><creatorcontrib>Wang, Yuting</creatorcontrib><creatorcontrib>Teo, Wei Liang</creatorcontrib><creatorcontrib>Xie, Aming</creatorcontrib><creatorcontrib>Guo, Yang</creatorcontrib><creatorcontrib>Dai, Yuxuan</creatorcontrib><creatorcontrib>Zhou, Weiqiang</creatorcontrib><creatorcontrib>Jana, Deblin</creatorcontrib><creatorcontrib>Xian, Qiming</creatorcontrib><creatorcontrib>Dong, Wei</creatorcontrib><creatorcontrib>Zhao, Yanli</creatorcontrib><title>Ultrathin ZnIn2S4 Nanosheets Anchored on Ti3C2TX MXene for Photocatalytic H2 Evolution</title><title>Angewandte Chemie International Edition</title><description>Photocatalysts derived from semiconductor heterojunctions that harvest solar energy and catalyze reactions still suffer from low solar‐to‐hydrogen conversion efficiency. Now, MXene (Ti3C2TX) nanosheets (MNs) are used to support the in situ growth of ultrathin ZnIn2S4 nanosheets (UZNs), producing sandwich‐like hierarchical heterostructures (UZNs‐MNs‐UZNs) for efficient photocatalytic H2 evolution. Opportune lateral epitaxy of UZNs on the surface of MNs improves specific surface area, pore diameter, and hydrophilicity of the resulting materials, all of which could be beneficial to the photocatalytic activity. Owing to the Schottky junction and ultrathin 2D structures of UZNs and MNs, the heterostructures could effectively suppress photoexcited electron–hole recombination and boost photoexcited charge transfer and separation. The heterostructure photocatalyst exhibits improved photocatalytic H2 evolution performance (6.6 times higher than pristine ZnIn2S4) and excellent stability.
MXene nanosheets are used to support the in situ growth of ultrathin ZnIn2S4. The obtained sandwich‐like hierarchical heterostructure could effectively suppress photoexcited electron–hole recombination and boost photoexcited charge transfer and separation, exhibiting efficient photocatalytic H2 evolution performance and excellent stability.</description><subject>Catalytic activity</subject><subject>Charge transfer</subject><subject>Chemical reactions</subject><subject>Energy harvesting</subject><subject>Evolution</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Hydrogen evolution</subject><subject>MXene</subject><subject>MXenes</subject><subject>Nanosheets</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>photocatalytic H2 evolution</subject><subject>photoexcited charge separation</subject><subject>Recombination</subject><subject>Solar energy</subject><subject>two-dimensional heterostructures</subject><subject>ZnIn2S4 nanosheets</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEURoMoWKtb1wHXU_OYvJalVFuoVbCV4iakmYwzZUzqTGrpvzel0tX9Lhy-ezkA3GM0wAiRR-NrNyCIpIwpvwA9zAjOqBD0MuWc0kxIhq_BTddtEiMl4j3wsWxia2JVe_jpp56853BufOgq52IHh95WoXUFDB4uajoiixV8WTnvYBla-FaFGKyJpjnE2sIJgePf0OxiHfwtuCpN07m7_9kHy6fxYjTJZq_P09Fwln1hyXgmraOqNLnkIv3KVKkkp6iwKucFzxm31jKm7FqsOaGotEYopowVCShIyTHtg4dT77YNPzvXRb0Ju9ank5rkWComkFKJUidqXzfuoLdt_W3ag8ZIH8Xpozh9FqeH8-n4vNE_9lZiVw</recordid><startdate>20200706</startdate><enddate>20200706</enddate><creator>Zuo, Gancheng</creator><creator>Wang, Yuting</creator><creator>Teo, Wei Liang</creator><creator>Xie, Aming</creator><creator>Guo, Yang</creator><creator>Dai, Yuxuan</creator><creator>Zhou, Weiqiang</creator><creator>Jana, Deblin</creator><creator>Xian, Qiming</creator><creator>Dong, Wei</creator><creator>Zhao, Yanli</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-9231-8360</orcidid></search><sort><creationdate>20200706</creationdate><title>Ultrathin ZnIn2S4 Nanosheets Anchored on Ti3C2TX MXene for Photocatalytic H2 Evolution</title><author>Zuo, Gancheng ; Wang, Yuting ; Teo, Wei Liang ; Xie, Aming ; Guo, Yang ; Dai, Yuxuan ; Zhou, Weiqiang ; Jana, Deblin ; Xian, Qiming ; Dong, Wei ; Zhao, Yanli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1856-8ce39fa486752159f98630dc946d6456ccc559cb7b6230fca7959ac7c94d2f613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalytic activity</topic><topic>Charge transfer</topic><topic>Chemical reactions</topic><topic>Energy harvesting</topic><topic>Evolution</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Hydrogen evolution</topic><topic>MXene</topic><topic>MXenes</topic><topic>Nanosheets</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>photocatalytic H2 evolution</topic><topic>photoexcited charge separation</topic><topic>Recombination</topic><topic>Solar energy</topic><topic>two-dimensional heterostructures</topic><topic>ZnIn2S4 nanosheets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Gancheng</creatorcontrib><creatorcontrib>Wang, Yuting</creatorcontrib><creatorcontrib>Teo, Wei Liang</creatorcontrib><creatorcontrib>Xie, Aming</creatorcontrib><creatorcontrib>Guo, Yang</creatorcontrib><creatorcontrib>Dai, Yuxuan</creatorcontrib><creatorcontrib>Zhou, Weiqiang</creatorcontrib><creatorcontrib>Jana, Deblin</creatorcontrib><creatorcontrib>Xian, Qiming</creatorcontrib><creatorcontrib>Dong, Wei</creatorcontrib><creatorcontrib>Zhao, Yanli</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuo, Gancheng</au><au>Wang, Yuting</au><au>Teo, Wei Liang</au><au>Xie, Aming</au><au>Guo, Yang</au><au>Dai, Yuxuan</au><au>Zhou, Weiqiang</au><au>Jana, Deblin</au><au>Xian, Qiming</au><au>Dong, Wei</au><au>Zhao, Yanli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin ZnIn2S4 Nanosheets Anchored on Ti3C2TX MXene for Photocatalytic H2 Evolution</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2020-07-06</date><risdate>2020</risdate><volume>59</volume><issue>28</issue><spage>11287</spage><epage>11292</epage><pages>11287-11292</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Photocatalysts derived from semiconductor heterojunctions that harvest solar energy and catalyze reactions still suffer from low solar‐to‐hydrogen conversion efficiency. Now, MXene (Ti3C2TX) nanosheets (MNs) are used to support the in situ growth of ultrathin ZnIn2S4 nanosheets (UZNs), producing sandwich‐like hierarchical heterostructures (UZNs‐MNs‐UZNs) for efficient photocatalytic H2 evolution. Opportune lateral epitaxy of UZNs on the surface of MNs improves specific surface area, pore diameter, and hydrophilicity of the resulting materials, all of which could be beneficial to the photocatalytic activity. Owing to the Schottky junction and ultrathin 2D structures of UZNs and MNs, the heterostructures could effectively suppress photoexcited electron–hole recombination and boost photoexcited charge transfer and separation. The heterostructure photocatalyst exhibits improved photocatalytic H2 evolution performance (6.6 times higher than pristine ZnIn2S4) and excellent stability.
MXene nanosheets are used to support the in situ growth of ultrathin ZnIn2S4. The obtained sandwich‐like hierarchical heterostructure could effectively suppress photoexcited electron–hole recombination and boost photoexcited charge transfer and separation, exhibiting efficient photocatalytic H2 evolution performance and excellent stability.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202002136</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-9231-8360</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2020-07, Vol.59 (28), p.11287-11292 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_journals_2418957099 |
source | Wiley Online Library All Journals |
subjects | Catalytic activity Charge transfer Chemical reactions Energy harvesting Evolution Heterojunctions Heterostructures Hydrogen evolution MXene MXenes Nanosheets Photocatalysis Photocatalysts photocatalytic H2 evolution photoexcited charge separation Recombination Solar energy two-dimensional heterostructures ZnIn2S4 nanosheets |
title | Ultrathin ZnIn2S4 Nanosheets Anchored on Ti3C2TX MXene for Photocatalytic H2 Evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20ZnIn2S4%20Nanosheets%20Anchored%20on%20Ti3C2TX%20MXene%20for%20Photocatalytic%20H2%20Evolution&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zuo,%20Gancheng&rft.date=2020-07-06&rft.volume=59&rft.issue=28&rft.spage=11287&rft.epage=11292&rft.pages=11287-11292&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202002136&rft_dat=%3Cproquest_wiley%3E2418957099%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418957099&rft_id=info:pmid/&rfr_iscdi=true |