Ultrathin ZnIn2S4 Nanosheets Anchored on Ti3C2TX MXene for Photocatalytic H2 Evolution

Photocatalysts derived from semiconductor heterojunctions that harvest solar energy and catalyze reactions still suffer from low solar‐to‐hydrogen conversion efficiency. Now, MXene (Ti3C2TX) nanosheets (MNs) are used to support the in situ growth of ultrathin ZnIn2S4 nanosheets (UZNs), producing san...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-07, Vol.59 (28), p.11287-11292
Hauptverfasser: Zuo, Gancheng, Wang, Yuting, Teo, Wei Liang, Xie, Aming, Guo, Yang, Dai, Yuxuan, Zhou, Weiqiang, Jana, Deblin, Xian, Qiming, Dong, Wei, Zhao, Yanli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11292
container_issue 28
container_start_page 11287
container_title Angewandte Chemie International Edition
container_volume 59
creator Zuo, Gancheng
Wang, Yuting
Teo, Wei Liang
Xie, Aming
Guo, Yang
Dai, Yuxuan
Zhou, Weiqiang
Jana, Deblin
Xian, Qiming
Dong, Wei
Zhao, Yanli
description Photocatalysts derived from semiconductor heterojunctions that harvest solar energy and catalyze reactions still suffer from low solar‐to‐hydrogen conversion efficiency. Now, MXene (Ti3C2TX) nanosheets (MNs) are used to support the in situ growth of ultrathin ZnIn2S4 nanosheets (UZNs), producing sandwich‐like hierarchical heterostructures (UZNs‐MNs‐UZNs) for efficient photocatalytic H2 evolution. Opportune lateral epitaxy of UZNs on the surface of MNs improves specific surface area, pore diameter, and hydrophilicity of the resulting materials, all of which could be beneficial to the photocatalytic activity. Owing to the Schottky junction and ultrathin 2D structures of UZNs and MNs, the heterostructures could effectively suppress photoexcited electron–hole recombination and boost photoexcited charge transfer and separation. The heterostructure photocatalyst exhibits improved photocatalytic H2 evolution performance (6.6 times higher than pristine ZnIn2S4) and excellent stability. MXene nanosheets are used to support the in situ growth of ultrathin ZnIn2S4. The obtained sandwich‐like hierarchical heterostructure could effectively suppress photoexcited electron–hole recombination and boost photoexcited charge transfer and separation, exhibiting efficient photocatalytic H2 evolution performance and excellent stability.
doi_str_mv 10.1002/anie.202002136
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2418957099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418957099</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1856-8ce39fa486752159f98630dc946d6456ccc559cb7b6230fca7959ac7c94d2f613</originalsourceid><addsrcrecordid>eNo9kEtLAzEURoMoWKtb1wHXU_OYvJalVFuoVbCV4iakmYwzZUzqTGrpvzel0tX9Lhy-ezkA3GM0wAiRR-NrNyCIpIwpvwA9zAjOqBD0MuWc0kxIhq_BTddtEiMl4j3wsWxia2JVe_jpp56853BufOgq52IHh95WoXUFDB4uajoiixV8WTnvYBla-FaFGKyJpjnE2sIJgePf0OxiHfwtuCpN07m7_9kHy6fxYjTJZq_P09Fwln1hyXgmraOqNLnkIv3KVKkkp6iwKucFzxm31jKm7FqsOaGotEYopowVCShIyTHtg4dT77YNPzvXRb0Ju9ank5rkWComkFKJUidqXzfuoLdt_W3ag8ZIH8Xpozh9FqeH8-n4vNE_9lZiVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418957099</pqid></control><display><type>article</type><title>Ultrathin ZnIn2S4 Nanosheets Anchored on Ti3C2TX MXene for Photocatalytic H2 Evolution</title><source>Wiley Online Library All Journals</source><creator>Zuo, Gancheng ; Wang, Yuting ; Teo, Wei Liang ; Xie, Aming ; Guo, Yang ; Dai, Yuxuan ; Zhou, Weiqiang ; Jana, Deblin ; Xian, Qiming ; Dong, Wei ; Zhao, Yanli</creator><creatorcontrib>Zuo, Gancheng ; Wang, Yuting ; Teo, Wei Liang ; Xie, Aming ; Guo, Yang ; Dai, Yuxuan ; Zhou, Weiqiang ; Jana, Deblin ; Xian, Qiming ; Dong, Wei ; Zhao, Yanli</creatorcontrib><description>Photocatalysts derived from semiconductor heterojunctions that harvest solar energy and catalyze reactions still suffer from low solar‐to‐hydrogen conversion efficiency. Now, MXene (Ti3C2TX) nanosheets (MNs) are used to support the in situ growth of ultrathin ZnIn2S4 nanosheets (UZNs), producing sandwich‐like hierarchical heterostructures (UZNs‐MNs‐UZNs) for efficient photocatalytic H2 evolution. Opportune lateral epitaxy of UZNs on the surface of MNs improves specific surface area, pore diameter, and hydrophilicity of the resulting materials, all of which could be beneficial to the photocatalytic activity. Owing to the Schottky junction and ultrathin 2D structures of UZNs and MNs, the heterostructures could effectively suppress photoexcited electron–hole recombination and boost photoexcited charge transfer and separation. The heterostructure photocatalyst exhibits improved photocatalytic H2 evolution performance (6.6 times higher than pristine ZnIn2S4) and excellent stability. MXene nanosheets are used to support the in situ growth of ultrathin ZnIn2S4. The obtained sandwich‐like hierarchical heterostructure could effectively suppress photoexcited electron–hole recombination and boost photoexcited charge transfer and separation, exhibiting efficient photocatalytic H2 evolution performance and excellent stability.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202002136</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalytic activity ; Charge transfer ; Chemical reactions ; Energy harvesting ; Evolution ; Heterojunctions ; Heterostructures ; Hydrogen evolution ; MXene ; MXenes ; Nanosheets ; Photocatalysis ; Photocatalysts ; photocatalytic H2 evolution ; photoexcited charge separation ; Recombination ; Solar energy ; two-dimensional heterostructures ; ZnIn2S4 nanosheets</subject><ispartof>Angewandte Chemie International Edition, 2020-07, Vol.59 (28), p.11287-11292</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9231-8360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202002136$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202002136$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zuo, Gancheng</creatorcontrib><creatorcontrib>Wang, Yuting</creatorcontrib><creatorcontrib>Teo, Wei Liang</creatorcontrib><creatorcontrib>Xie, Aming</creatorcontrib><creatorcontrib>Guo, Yang</creatorcontrib><creatorcontrib>Dai, Yuxuan</creatorcontrib><creatorcontrib>Zhou, Weiqiang</creatorcontrib><creatorcontrib>Jana, Deblin</creatorcontrib><creatorcontrib>Xian, Qiming</creatorcontrib><creatorcontrib>Dong, Wei</creatorcontrib><creatorcontrib>Zhao, Yanli</creatorcontrib><title>Ultrathin ZnIn2S4 Nanosheets Anchored on Ti3C2TX MXene for Photocatalytic H2 Evolution</title><title>Angewandte Chemie International Edition</title><description>Photocatalysts derived from semiconductor heterojunctions that harvest solar energy and catalyze reactions still suffer from low solar‐to‐hydrogen conversion efficiency. Now, MXene (Ti3C2TX) nanosheets (MNs) are used to support the in situ growth of ultrathin ZnIn2S4 nanosheets (UZNs), producing sandwich‐like hierarchical heterostructures (UZNs‐MNs‐UZNs) for efficient photocatalytic H2 evolution. Opportune lateral epitaxy of UZNs on the surface of MNs improves specific surface area, pore diameter, and hydrophilicity of the resulting materials, all of which could be beneficial to the photocatalytic activity. Owing to the Schottky junction and ultrathin 2D structures of UZNs and MNs, the heterostructures could effectively suppress photoexcited electron–hole recombination and boost photoexcited charge transfer and separation. The heterostructure photocatalyst exhibits improved photocatalytic H2 evolution performance (6.6 times higher than pristine ZnIn2S4) and excellent stability. MXene nanosheets are used to support the in situ growth of ultrathin ZnIn2S4. The obtained sandwich‐like hierarchical heterostructure could effectively suppress photoexcited electron–hole recombination and boost photoexcited charge transfer and separation, exhibiting efficient photocatalytic H2 evolution performance and excellent stability.</description><subject>Catalytic activity</subject><subject>Charge transfer</subject><subject>Chemical reactions</subject><subject>Energy harvesting</subject><subject>Evolution</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Hydrogen evolution</subject><subject>MXene</subject><subject>MXenes</subject><subject>Nanosheets</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>photocatalytic H2 evolution</subject><subject>photoexcited charge separation</subject><subject>Recombination</subject><subject>Solar energy</subject><subject>two-dimensional heterostructures</subject><subject>ZnIn2S4 nanosheets</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEURoMoWKtb1wHXU_OYvJalVFuoVbCV4iakmYwzZUzqTGrpvzel0tX9Lhy-ezkA3GM0wAiRR-NrNyCIpIwpvwA9zAjOqBD0MuWc0kxIhq_BTddtEiMl4j3wsWxia2JVe_jpp56853BufOgq52IHh95WoXUFDB4uajoiixV8WTnvYBla-FaFGKyJpjnE2sIJgePf0OxiHfwtuCpN07m7_9kHy6fxYjTJZq_P09Fwln1hyXgmraOqNLnkIv3KVKkkp6iwKucFzxm31jKm7FqsOaGotEYopowVCShIyTHtg4dT77YNPzvXRb0Ju9ank5rkWComkFKJUidqXzfuoLdt_W3ag8ZIH8Xpozh9FqeH8-n4vNE_9lZiVw</recordid><startdate>20200706</startdate><enddate>20200706</enddate><creator>Zuo, Gancheng</creator><creator>Wang, Yuting</creator><creator>Teo, Wei Liang</creator><creator>Xie, Aming</creator><creator>Guo, Yang</creator><creator>Dai, Yuxuan</creator><creator>Zhou, Weiqiang</creator><creator>Jana, Deblin</creator><creator>Xian, Qiming</creator><creator>Dong, Wei</creator><creator>Zhao, Yanli</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-9231-8360</orcidid></search><sort><creationdate>20200706</creationdate><title>Ultrathin ZnIn2S4 Nanosheets Anchored on Ti3C2TX MXene for Photocatalytic H2 Evolution</title><author>Zuo, Gancheng ; Wang, Yuting ; Teo, Wei Liang ; Xie, Aming ; Guo, Yang ; Dai, Yuxuan ; Zhou, Weiqiang ; Jana, Deblin ; Xian, Qiming ; Dong, Wei ; Zhao, Yanli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1856-8ce39fa486752159f98630dc946d6456ccc559cb7b6230fca7959ac7c94d2f613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalytic activity</topic><topic>Charge transfer</topic><topic>Chemical reactions</topic><topic>Energy harvesting</topic><topic>Evolution</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Hydrogen evolution</topic><topic>MXene</topic><topic>MXenes</topic><topic>Nanosheets</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>photocatalytic H2 evolution</topic><topic>photoexcited charge separation</topic><topic>Recombination</topic><topic>Solar energy</topic><topic>two-dimensional heterostructures</topic><topic>ZnIn2S4 nanosheets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Gancheng</creatorcontrib><creatorcontrib>Wang, Yuting</creatorcontrib><creatorcontrib>Teo, Wei Liang</creatorcontrib><creatorcontrib>Xie, Aming</creatorcontrib><creatorcontrib>Guo, Yang</creatorcontrib><creatorcontrib>Dai, Yuxuan</creatorcontrib><creatorcontrib>Zhou, Weiqiang</creatorcontrib><creatorcontrib>Jana, Deblin</creatorcontrib><creatorcontrib>Xian, Qiming</creatorcontrib><creatorcontrib>Dong, Wei</creatorcontrib><creatorcontrib>Zhao, Yanli</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuo, Gancheng</au><au>Wang, Yuting</au><au>Teo, Wei Liang</au><au>Xie, Aming</au><au>Guo, Yang</au><au>Dai, Yuxuan</au><au>Zhou, Weiqiang</au><au>Jana, Deblin</au><au>Xian, Qiming</au><au>Dong, Wei</au><au>Zhao, Yanli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin ZnIn2S4 Nanosheets Anchored on Ti3C2TX MXene for Photocatalytic H2 Evolution</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2020-07-06</date><risdate>2020</risdate><volume>59</volume><issue>28</issue><spage>11287</spage><epage>11292</epage><pages>11287-11292</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Photocatalysts derived from semiconductor heterojunctions that harvest solar energy and catalyze reactions still suffer from low solar‐to‐hydrogen conversion efficiency. Now, MXene (Ti3C2TX) nanosheets (MNs) are used to support the in situ growth of ultrathin ZnIn2S4 nanosheets (UZNs), producing sandwich‐like hierarchical heterostructures (UZNs‐MNs‐UZNs) for efficient photocatalytic H2 evolution. Opportune lateral epitaxy of UZNs on the surface of MNs improves specific surface area, pore diameter, and hydrophilicity of the resulting materials, all of which could be beneficial to the photocatalytic activity. Owing to the Schottky junction and ultrathin 2D structures of UZNs and MNs, the heterostructures could effectively suppress photoexcited electron–hole recombination and boost photoexcited charge transfer and separation. The heterostructure photocatalyst exhibits improved photocatalytic H2 evolution performance (6.6 times higher than pristine ZnIn2S4) and excellent stability. MXene nanosheets are used to support the in situ growth of ultrathin ZnIn2S4. The obtained sandwich‐like hierarchical heterostructure could effectively suppress photoexcited electron–hole recombination and boost photoexcited charge transfer and separation, exhibiting efficient photocatalytic H2 evolution performance and excellent stability.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202002136</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-9231-8360</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2020-07, Vol.59 (28), p.11287-11292
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_journals_2418957099
source Wiley Online Library All Journals
subjects Catalytic activity
Charge transfer
Chemical reactions
Energy harvesting
Evolution
Heterojunctions
Heterostructures
Hydrogen evolution
MXene
MXenes
Nanosheets
Photocatalysis
Photocatalysts
photocatalytic H2 evolution
photoexcited charge separation
Recombination
Solar energy
two-dimensional heterostructures
ZnIn2S4 nanosheets
title Ultrathin ZnIn2S4 Nanosheets Anchored on Ti3C2TX MXene for Photocatalytic H2 Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20ZnIn2S4%20Nanosheets%20Anchored%20on%20Ti3C2TX%20MXene%20for%20Photocatalytic%20H2%20Evolution&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zuo,%20Gancheng&rft.date=2020-07-06&rft.volume=59&rft.issue=28&rft.spage=11287&rft.epage=11292&rft.pages=11287-11292&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202002136&rft_dat=%3Cproquest_wiley%3E2418957099%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418957099&rft_id=info:pmid/&rfr_iscdi=true