Penalized Averaging of Parametric and Non-Parametric Quantile Forecasts
We propose a hybrid penalized averaging for combining parametric and non-parametric quantile forecasts when faced with a large number of predictors. This approach goes beyond the usual practice of combining conditional mean forecasts from parametric time series models with only a few predictors. The...
Gespeichert in:
Veröffentlicht in: | Journal of time series econometrics 2020-01, Vol.12 (1), p.1-15 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of time series econometrics |
container_volume | 12 |
creator | De Gooijer, Jan G. Zerom, Dawit |
description | We propose a hybrid penalized averaging for combining parametric and non-parametric quantile forecasts when faced with a large number of predictors. This approach goes beyond the usual practice of combining conditional mean forecasts from parametric time series models with only a few predictors. The hybrid methodology adopts the adaptive LASSO regularization to simultaneously reduce predictor dimension and obtain quantile forecasts. Several recent empirical studies have considered a large set of macroeconomic predictors and technical indicators with the goal of forecasting the S&P 500 equity risk premium. To illustrate the merit of the proposed approach, we extend the mean-based equity premium forecasting into the conditional quantile context. The application offers three main findings. First, combining parametric and non-parametric approaches adds quantile forecast accuracy over and above the constituent methods. Second, a handful of macroeconomic predictors are found to have systematic forecasting power. Third, different predictors are identified as important when considering lower, central and upper quantiles of the equity premium distribution. |
doi_str_mv | 10.1515/jtse-2019-0021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2418934511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418934511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-76ff6b37543f6a16a533e2a8f8699b02e29ebd5cbedd52e46650544be19152543</originalsourceid><addsrcrecordid>eNptkMFLwzAUxoMoOKdXzwXP1bw0SZvjGG4KQyfoOaTt6-jompm0yvzrTamwHTy9j8fv-3jvI-QW6D0IEA_bzmPMKKiYUgZnZAKKQwyKZecn-pJceb-lVIosFROyXGNrmvoHy2j2hc5s6nYT2SpaG2d22Lm6iExbRi-2jU9Wb71pu7rBaGEdFsZ3_ppcVKbxePM3p-Rj8fg-f4pXr8vn-WwVF5ynXZzKqpJ5kgqeVNKANCJJkJmsyqRSOWXIFOalKHIsS8GQSymo4DxHUCBYcE3J3Zi7d_azR9_pre1deMFrxiFTCRcAgbofqcJZ7x1Weu_qnXEHDVQPZemhLD2UpYeygiEaDVjYtvZHPGUyZGaUBUSNyLdpOnQlblx_COJ4wP_ZEOJ_ActnehY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418934511</pqid></control><display><type>article</type><title>Penalized Averaging of Parametric and Non-Parametric Quantile Forecasts</title><source>De Gruyter journals</source><creator>De Gooijer, Jan G. ; Zerom, Dawit</creator><creatorcontrib>De Gooijer, Jan G. ; Zerom, Dawit</creatorcontrib><description>We propose a hybrid penalized averaging for combining parametric and non-parametric quantile forecasts when faced with a large number of predictors. This approach goes beyond the usual practice of combining conditional mean forecasts from parametric time series models with only a few predictors. The hybrid methodology adopts the adaptive LASSO regularization to simultaneously reduce predictor dimension and obtain quantile forecasts. Several recent empirical studies have considered a large set of macroeconomic predictors and technical indicators with the goal of forecasting the S&P 500 equity risk premium. To illustrate the merit of the proposed approach, we extend the mean-based equity premium forecasting into the conditional quantile context. The application offers three main findings. First, combining parametric and non-parametric approaches adds quantile forecast accuracy over and above the constituent methods. Second, a handful of macroeconomic predictors are found to have systematic forecasting power. Third, different predictors are identified as important when considering lower, central and upper quantiles of the equity premium distribution.</description><identifier>ISSN: 1941-1928</identifier><identifier>EISSN: 1941-1928</identifier><identifier>EISSN: 2194-6507</identifier><identifier>DOI: 10.1515/jtse-2019-0021</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>Forecasting techniques ; large database ; Macroeconomics ; non-parametric ; Nonparametric statistics ; parametric ; penalized averaging ; quantile forecasting</subject><ispartof>Journal of time series econometrics, 2020-01, Vol.12 (1), p.1-15</ispartof><rights>2019 Walter de Gruyter GmbH, Berlin/Boston</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-76ff6b37543f6a16a533e2a8f8699b02e29ebd5cbedd52e46650544be19152543</citedby><cites>FETCH-LOGICAL-c447t-76ff6b37543f6a16a533e2a8f8699b02e29ebd5cbedd52e46650544be19152543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/jtse-2019-0021/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/jtse-2019-0021/html$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,66500,68284</link.rule.ids></links><search><creatorcontrib>De Gooijer, Jan G.</creatorcontrib><creatorcontrib>Zerom, Dawit</creatorcontrib><title>Penalized Averaging of Parametric and Non-Parametric Quantile Forecasts</title><title>Journal of time series econometrics</title><description>We propose a hybrid penalized averaging for combining parametric and non-parametric quantile forecasts when faced with a large number of predictors. This approach goes beyond the usual practice of combining conditional mean forecasts from parametric time series models with only a few predictors. The hybrid methodology adopts the adaptive LASSO regularization to simultaneously reduce predictor dimension and obtain quantile forecasts. Several recent empirical studies have considered a large set of macroeconomic predictors and technical indicators with the goal of forecasting the S&P 500 equity risk premium. To illustrate the merit of the proposed approach, we extend the mean-based equity premium forecasting into the conditional quantile context. The application offers three main findings. First, combining parametric and non-parametric approaches adds quantile forecast accuracy over and above the constituent methods. Second, a handful of macroeconomic predictors are found to have systematic forecasting power. Third, different predictors are identified as important when considering lower, central and upper quantiles of the equity premium distribution.</description><subject>Forecasting techniques</subject><subject>large database</subject><subject>Macroeconomics</subject><subject>non-parametric</subject><subject>Nonparametric statistics</subject><subject>parametric</subject><subject>penalized averaging</subject><subject>quantile forecasting</subject><issn>1941-1928</issn><issn>1941-1928</issn><issn>2194-6507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkMFLwzAUxoMoOKdXzwXP1bw0SZvjGG4KQyfoOaTt6-jompm0yvzrTamwHTy9j8fv-3jvI-QW6D0IEA_bzmPMKKiYUgZnZAKKQwyKZecn-pJceb-lVIosFROyXGNrmvoHy2j2hc5s6nYT2SpaG2d22Lm6iExbRi-2jU9Wb71pu7rBaGEdFsZ3_ppcVKbxePM3p-Rj8fg-f4pXr8vn-WwVF5ynXZzKqpJ5kgqeVNKANCJJkJmsyqRSOWXIFOalKHIsS8GQSymo4DxHUCBYcE3J3Zi7d_azR9_pre1deMFrxiFTCRcAgbofqcJZ7x1Weu_qnXEHDVQPZemhLD2UpYeygiEaDVjYtvZHPGUyZGaUBUSNyLdpOnQlblx_COJ4wP_ZEOJ_ActnehY</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>De Gooijer, Jan G.</creator><creator>Zerom, Dawit</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20200101</creationdate><title>Penalized Averaging of Parametric and Non-Parametric Quantile Forecasts</title><author>De Gooijer, Jan G. ; Zerom, Dawit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-76ff6b37543f6a16a533e2a8f8699b02e29ebd5cbedd52e46650544be19152543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Forecasting techniques</topic><topic>large database</topic><topic>Macroeconomics</topic><topic>non-parametric</topic><topic>Nonparametric statistics</topic><topic>parametric</topic><topic>penalized averaging</topic><topic>quantile forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Gooijer, Jan G.</creatorcontrib><creatorcontrib>Zerom, Dawit</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Databases</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of time series econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Gooijer, Jan G.</au><au>Zerom, Dawit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Penalized Averaging of Parametric and Non-Parametric Quantile Forecasts</atitle><jtitle>Journal of time series econometrics</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>12</volume><issue>1</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1941-1928</issn><eissn>1941-1928</eissn><eissn>2194-6507</eissn><abstract>We propose a hybrid penalized averaging for combining parametric and non-parametric quantile forecasts when faced with a large number of predictors. This approach goes beyond the usual practice of combining conditional mean forecasts from parametric time series models with only a few predictors. The hybrid methodology adopts the adaptive LASSO regularization to simultaneously reduce predictor dimension and obtain quantile forecasts. Several recent empirical studies have considered a large set of macroeconomic predictors and technical indicators with the goal of forecasting the S&P 500 equity risk premium. To illustrate the merit of the proposed approach, we extend the mean-based equity premium forecasting into the conditional quantile context. The application offers three main findings. First, combining parametric and non-parametric approaches adds quantile forecast accuracy over and above the constituent methods. Second, a handful of macroeconomic predictors are found to have systematic forecasting power. Third, different predictors are identified as important when considering lower, central and upper quantiles of the equity premium distribution.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/jtse-2019-0021</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1941-1928 |
ispartof | Journal of time series econometrics, 2020-01, Vol.12 (1), p.1-15 |
issn | 1941-1928 1941-1928 2194-6507 |
language | eng |
recordid | cdi_proquest_journals_2418934511 |
source | De Gruyter journals |
subjects | Forecasting techniques large database Macroeconomics non-parametric Nonparametric statistics parametric penalized averaging quantile forecasting |
title | Penalized Averaging of Parametric and Non-Parametric Quantile Forecasts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Penalized%20Averaging%20of%20Parametric%20and%20Non-Parametric%20Quantile%20Forecasts&rft.jtitle=Journal%20of%20time%20series%20econometrics&rft.au=De%20Gooijer,%20Jan%20G.&rft.date=2020-01-01&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1941-1928&rft.eissn=1941-1928&rft_id=info:doi/10.1515/jtse-2019-0021&rft_dat=%3Cproquest_cross%3E2418934511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418934511&rft_id=info:pmid/&rfr_iscdi=true |