Penalized Averaging of Parametric and Non-Parametric Quantile Forecasts

We propose a hybrid penalized averaging for combining parametric and non-parametric quantile forecasts when faced with a large number of predictors. This approach goes beyond the usual practice of combining conditional mean forecasts from parametric time series models with only a few predictors. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of time series econometrics 2020-01, Vol.12 (1), p.1-15
Hauptverfasser: De Gooijer, Jan G., Zerom, Dawit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 1
container_start_page 1
container_title Journal of time series econometrics
container_volume 12
creator De Gooijer, Jan G.
Zerom, Dawit
description We propose a hybrid penalized averaging for combining parametric and non-parametric quantile forecasts when faced with a large number of predictors. This approach goes beyond the usual practice of combining conditional mean forecasts from parametric time series models with only a few predictors. The hybrid methodology adopts the adaptive LASSO regularization to simultaneously reduce predictor dimension and obtain quantile forecasts. Several recent empirical studies have considered a large set of macroeconomic predictors and technical indicators with the goal of forecasting the S&P 500 equity risk premium. To illustrate the merit of the proposed approach, we extend the mean-based equity premium forecasting into the conditional quantile context. The application offers three main findings. First, combining parametric and non-parametric approaches adds quantile forecast accuracy over and above the constituent methods. Second, a handful of macroeconomic predictors are found to have systematic forecasting power. Third, different predictors are identified as important when considering lower, central and upper quantiles of the equity premium distribution.
doi_str_mv 10.1515/jtse-2019-0021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2418934511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418934511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-76ff6b37543f6a16a533e2a8f8699b02e29ebd5cbedd52e46650544be19152543</originalsourceid><addsrcrecordid>eNptkMFLwzAUxoMoOKdXzwXP1bw0SZvjGG4KQyfoOaTt6-jompm0yvzrTamwHTy9j8fv-3jvI-QW6D0IEA_bzmPMKKiYUgZnZAKKQwyKZecn-pJceb-lVIosFROyXGNrmvoHy2j2hc5s6nYT2SpaG2d22Lm6iExbRi-2jU9Wb71pu7rBaGEdFsZ3_ppcVKbxePM3p-Rj8fg-f4pXr8vn-WwVF5ynXZzKqpJ5kgqeVNKANCJJkJmsyqRSOWXIFOalKHIsS8GQSymo4DxHUCBYcE3J3Zi7d_azR9_pre1deMFrxiFTCRcAgbofqcJZ7x1Weu_qnXEHDVQPZemhLD2UpYeygiEaDVjYtvZHPGUyZGaUBUSNyLdpOnQlblx_COJ4wP_ZEOJ_ActnehY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418934511</pqid></control><display><type>article</type><title>Penalized Averaging of Parametric and Non-Parametric Quantile Forecasts</title><source>De Gruyter journals</source><creator>De Gooijer, Jan G. ; Zerom, Dawit</creator><creatorcontrib>De Gooijer, Jan G. ; Zerom, Dawit</creatorcontrib><description>We propose a hybrid penalized averaging for combining parametric and non-parametric quantile forecasts when faced with a large number of predictors. This approach goes beyond the usual practice of combining conditional mean forecasts from parametric time series models with only a few predictors. The hybrid methodology adopts the adaptive LASSO regularization to simultaneously reduce predictor dimension and obtain quantile forecasts. Several recent empirical studies have considered a large set of macroeconomic predictors and technical indicators with the goal of forecasting the S&amp;P 500 equity risk premium. To illustrate the merit of the proposed approach, we extend the mean-based equity premium forecasting into the conditional quantile context. The application offers three main findings. First, combining parametric and non-parametric approaches adds quantile forecast accuracy over and above the constituent methods. Second, a handful of macroeconomic predictors are found to have systematic forecasting power. Third, different predictors are identified as important when considering lower, central and upper quantiles of the equity premium distribution.</description><identifier>ISSN: 1941-1928</identifier><identifier>EISSN: 1941-1928</identifier><identifier>EISSN: 2194-6507</identifier><identifier>DOI: 10.1515/jtse-2019-0021</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>Forecasting techniques ; large database ; Macroeconomics ; non-parametric ; Nonparametric statistics ; parametric ; penalized averaging ; quantile forecasting</subject><ispartof>Journal of time series econometrics, 2020-01, Vol.12 (1), p.1-15</ispartof><rights>2019 Walter de Gruyter GmbH, Berlin/Boston</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-76ff6b37543f6a16a533e2a8f8699b02e29ebd5cbedd52e46650544be19152543</citedby><cites>FETCH-LOGICAL-c447t-76ff6b37543f6a16a533e2a8f8699b02e29ebd5cbedd52e46650544be19152543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/jtse-2019-0021/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/jtse-2019-0021/html$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,66500,68284</link.rule.ids></links><search><creatorcontrib>De Gooijer, Jan G.</creatorcontrib><creatorcontrib>Zerom, Dawit</creatorcontrib><title>Penalized Averaging of Parametric and Non-Parametric Quantile Forecasts</title><title>Journal of time series econometrics</title><description>We propose a hybrid penalized averaging for combining parametric and non-parametric quantile forecasts when faced with a large number of predictors. This approach goes beyond the usual practice of combining conditional mean forecasts from parametric time series models with only a few predictors. The hybrid methodology adopts the adaptive LASSO regularization to simultaneously reduce predictor dimension and obtain quantile forecasts. Several recent empirical studies have considered a large set of macroeconomic predictors and technical indicators with the goal of forecasting the S&amp;P 500 equity risk premium. To illustrate the merit of the proposed approach, we extend the mean-based equity premium forecasting into the conditional quantile context. The application offers three main findings. First, combining parametric and non-parametric approaches adds quantile forecast accuracy over and above the constituent methods. Second, a handful of macroeconomic predictors are found to have systematic forecasting power. Third, different predictors are identified as important when considering lower, central and upper quantiles of the equity premium distribution.</description><subject>Forecasting techniques</subject><subject>large database</subject><subject>Macroeconomics</subject><subject>non-parametric</subject><subject>Nonparametric statistics</subject><subject>parametric</subject><subject>penalized averaging</subject><subject>quantile forecasting</subject><issn>1941-1928</issn><issn>1941-1928</issn><issn>2194-6507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkMFLwzAUxoMoOKdXzwXP1bw0SZvjGG4KQyfoOaTt6-jompm0yvzrTamwHTy9j8fv-3jvI-QW6D0IEA_bzmPMKKiYUgZnZAKKQwyKZecn-pJceb-lVIosFROyXGNrmvoHy2j2hc5s6nYT2SpaG2d22Lm6iExbRi-2jU9Wb71pu7rBaGEdFsZ3_ppcVKbxePM3p-Rj8fg-f4pXr8vn-WwVF5ynXZzKqpJ5kgqeVNKANCJJkJmsyqRSOWXIFOalKHIsS8GQSymo4DxHUCBYcE3J3Zi7d_azR9_pre1deMFrxiFTCRcAgbofqcJZ7x1Weu_qnXEHDVQPZemhLD2UpYeygiEaDVjYtvZHPGUyZGaUBUSNyLdpOnQlblx_COJ4wP_ZEOJ_ActnehY</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>De Gooijer, Jan G.</creator><creator>Zerom, Dawit</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20200101</creationdate><title>Penalized Averaging of Parametric and Non-Parametric Quantile Forecasts</title><author>De Gooijer, Jan G. ; Zerom, Dawit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-76ff6b37543f6a16a533e2a8f8699b02e29ebd5cbedd52e46650544be19152543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Forecasting techniques</topic><topic>large database</topic><topic>Macroeconomics</topic><topic>non-parametric</topic><topic>Nonparametric statistics</topic><topic>parametric</topic><topic>penalized averaging</topic><topic>quantile forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Gooijer, Jan G.</creatorcontrib><creatorcontrib>Zerom, Dawit</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Databases</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of time series econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Gooijer, Jan G.</au><au>Zerom, Dawit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Penalized Averaging of Parametric and Non-Parametric Quantile Forecasts</atitle><jtitle>Journal of time series econometrics</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>12</volume><issue>1</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1941-1928</issn><eissn>1941-1928</eissn><eissn>2194-6507</eissn><abstract>We propose a hybrid penalized averaging for combining parametric and non-parametric quantile forecasts when faced with a large number of predictors. This approach goes beyond the usual practice of combining conditional mean forecasts from parametric time series models with only a few predictors. The hybrid methodology adopts the adaptive LASSO regularization to simultaneously reduce predictor dimension and obtain quantile forecasts. Several recent empirical studies have considered a large set of macroeconomic predictors and technical indicators with the goal of forecasting the S&amp;P 500 equity risk premium. To illustrate the merit of the proposed approach, we extend the mean-based equity premium forecasting into the conditional quantile context. The application offers three main findings. First, combining parametric and non-parametric approaches adds quantile forecast accuracy over and above the constituent methods. Second, a handful of macroeconomic predictors are found to have systematic forecasting power. Third, different predictors are identified as important when considering lower, central and upper quantiles of the equity premium distribution.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/jtse-2019-0021</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1941-1928
ispartof Journal of time series econometrics, 2020-01, Vol.12 (1), p.1-15
issn 1941-1928
1941-1928
2194-6507
language eng
recordid cdi_proquest_journals_2418934511
source De Gruyter journals
subjects Forecasting techniques
large database
Macroeconomics
non-parametric
Nonparametric statistics
parametric
penalized averaging
quantile forecasting
title Penalized Averaging of Parametric and Non-Parametric Quantile Forecasts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Penalized%20Averaging%20of%20Parametric%20and%20Non-Parametric%20Quantile%20Forecasts&rft.jtitle=Journal%20of%20time%20series%20econometrics&rft.au=De%20Gooijer,%20Jan%20G.&rft.date=2020-01-01&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1941-1928&rft.eissn=1941-1928&rft_id=info:doi/10.1515/jtse-2019-0021&rft_dat=%3Cproquest_cross%3E2418934511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418934511&rft_id=info:pmid/&rfr_iscdi=true