A Pore-Network Simulation Model of Dynamic CO2 Migration in Organic-Rich Shale Formations

One attractive aspect of CO 2 sequestration in shale formations is the preferential adsorption of CO 2 compared to methane, which may provide enhanced methane production as well as sequestration of carbon dioxide. In this work, a comprehensive theoretical model of CO 2 migration at the pore scale is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transport in porous media 2020-07, Vol.133 (3), p.479-496
Hauptverfasser: Zhang, Pengwei, Celia, Michael A., Bandilla, Karl W., Hu, Liming, Meegoda, Jay N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 496
container_issue 3
container_start_page 479
container_title Transport in porous media
container_volume 133
creator Zhang, Pengwei
Celia, Michael A.
Bandilla, Karl W.
Hu, Liming
Meegoda, Jay N.
description One attractive aspect of CO 2 sequestration in shale formations is the preferential adsorption of CO 2 compared to methane, which may provide enhanced methane production as well as sequestration of carbon dioxide. In this work, a comprehensive theoretical model of CO 2 migration at the pore scale is developed to study CO 2 migration properties in organic-rich shale formations. The proposed model takes into account dynamic competitive adsorption between CO 2 and CH 4 , slip-flow effects due to the nanometer range of pore sizes, and pore-size changes due to adsorption. Because of the high pressure and temperature, the injected CO 2 is in supercritical phase. Pore bodies in the shale matrix are irregular in shape, with roughness along pore wall. The structure of pore body affects the amount of surface areas and associated number of adsorption sites, and hence, a shape factor is proposed in this work to consider the irregularity of pore structure in shale matrix. The sorption of CO 2 leads to an apparent retardation of the migration of CO 2 , which is quantified in this work. The developed pore-network model is extended to consider the impacts of different spatial distributions of the organic materials within the shale matrix.
doi_str_mv 10.1007/s11242-020-01434-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2418896871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418896871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2719-47bc526a5b4e8d916c51509950e814a206e0d87653190fc34260d522efc847d3</originalsourceid><addsrcrecordid>eNp9kMFOAjEURRujiYj-gKsmrqt9baczXRIUNQExwsZVUzodKA5TbCGGv3dkTNy5eot7z33JQega6C1Qmt8lACYYoYwSCoILok5QD7KcE5BcnKIeBakIV8DP0UVKa0pbrBA99D7AryE68uJ2XyF-4Jnf7Guz86HBk1C6GocK3x8as_EWD6cMT_wydrFv8DQuTeMtefN2hWcrUzs8CnFzzNMlOqtMndzV7-2j-ehhPnwi4-nj83AwJpbloIjIFzZj0mQL4YpSgbQZZFSpjLoChGFUOloWucw4KFpZLpikZcaYq2wh8pL30U03u43hc-_STq_DPjbtR80EFIWSRQ5ti3UtG0NK0VV6G_3GxIMGqn8M6s6gbg3qo0GtWoh3UGrLzdLFv-l_qG-Z7HER</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418896871</pqid></control><display><type>article</type><title>A Pore-Network Simulation Model of Dynamic CO2 Migration in Organic-Rich Shale Formations</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Pengwei ; Celia, Michael A. ; Bandilla, Karl W. ; Hu, Liming ; Meegoda, Jay N.</creator><creatorcontrib>Zhang, Pengwei ; Celia, Michael A. ; Bandilla, Karl W. ; Hu, Liming ; Meegoda, Jay N.</creatorcontrib><description>One attractive aspect of CO 2 sequestration in shale formations is the preferential adsorption of CO 2 compared to methane, which may provide enhanced methane production as well as sequestration of carbon dioxide. In this work, a comprehensive theoretical model of CO 2 migration at the pore scale is developed to study CO 2 migration properties in organic-rich shale formations. The proposed model takes into account dynamic competitive adsorption between CO 2 and CH 4 , slip-flow effects due to the nanometer range of pore sizes, and pore-size changes due to adsorption. Because of the high pressure and temperature, the injected CO 2 is in supercritical phase. Pore bodies in the shale matrix are irregular in shape, with roughness along pore wall. The structure of pore body affects the amount of surface areas and associated number of adsorption sites, and hence, a shape factor is proposed in this work to consider the irregularity of pore structure in shale matrix. The sorption of CO 2 leads to an apparent retardation of the migration of CO 2 , which is quantified in this work. The developed pore-network model is extended to consider the impacts of different spatial distributions of the organic materials within the shale matrix.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-020-01434-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adsorption ; Carbon dioxide ; Carbon sequestration ; Civil Engineering ; Classical and Continuum Physics ; Computer simulation ; Earth and Environmental Science ; Earth Sciences ; Formations ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Methane ; Organic materials ; Porosity ; Shape factor ; Slip flow ; Spatial distribution</subject><ispartof>Transport in porous media, 2020-07, Vol.133 (3), p.479-496</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2719-47bc526a5b4e8d916c51509950e814a206e0d87653190fc34260d522efc847d3</citedby><cites>FETCH-LOGICAL-c2719-47bc526a5b4e8d916c51509950e814a206e0d87653190fc34260d522efc847d3</cites><orcidid>0000-0001-8522-9864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-020-01434-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-020-01434-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Zhang, Pengwei</creatorcontrib><creatorcontrib>Celia, Michael A.</creatorcontrib><creatorcontrib>Bandilla, Karl W.</creatorcontrib><creatorcontrib>Hu, Liming</creatorcontrib><creatorcontrib>Meegoda, Jay N.</creatorcontrib><title>A Pore-Network Simulation Model of Dynamic CO2 Migration in Organic-Rich Shale Formations</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>One attractive aspect of CO 2 sequestration in shale formations is the preferential adsorption of CO 2 compared to methane, which may provide enhanced methane production as well as sequestration of carbon dioxide. In this work, a comprehensive theoretical model of CO 2 migration at the pore scale is developed to study CO 2 migration properties in organic-rich shale formations. The proposed model takes into account dynamic competitive adsorption between CO 2 and CH 4 , slip-flow effects due to the nanometer range of pore sizes, and pore-size changes due to adsorption. Because of the high pressure and temperature, the injected CO 2 is in supercritical phase. Pore bodies in the shale matrix are irregular in shape, with roughness along pore wall. The structure of pore body affects the amount of surface areas and associated number of adsorption sites, and hence, a shape factor is proposed in this work to consider the irregularity of pore structure in shale matrix. The sorption of CO 2 leads to an apparent retardation of the migration of CO 2 , which is quantified in this work. The developed pore-network model is extended to consider the impacts of different spatial distributions of the organic materials within the shale matrix.</description><subject>Adsorption</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Computer simulation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Formations</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Methane</subject><subject>Organic materials</subject><subject>Porosity</subject><subject>Shape factor</subject><subject>Slip flow</subject><subject>Spatial distribution</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMFOAjEURRujiYj-gKsmrqt9baczXRIUNQExwsZVUzodKA5TbCGGv3dkTNy5eot7z33JQega6C1Qmt8lACYYoYwSCoILok5QD7KcE5BcnKIeBakIV8DP0UVKa0pbrBA99D7AryE68uJ2XyF-4Jnf7Guz86HBk1C6GocK3x8as_EWD6cMT_wydrFv8DQuTeMtefN2hWcrUzs8CnFzzNMlOqtMndzV7-2j-ehhPnwi4-nj83AwJpbloIjIFzZj0mQL4YpSgbQZZFSpjLoChGFUOloWucw4KFpZLpikZcaYq2wh8pL30U03u43hc-_STq_DPjbtR80EFIWSRQ5ti3UtG0NK0VV6G_3GxIMGqn8M6s6gbg3qo0GtWoh3UGrLzdLFv-l_qG-Z7HER</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Zhang, Pengwei</creator><creator>Celia, Michael A.</creator><creator>Bandilla, Karl W.</creator><creator>Hu, Liming</creator><creator>Meegoda, Jay N.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8522-9864</orcidid></search><sort><creationdate>20200701</creationdate><title>A Pore-Network Simulation Model of Dynamic CO2 Migration in Organic-Rich Shale Formations</title><author>Zhang, Pengwei ; Celia, Michael A. ; Bandilla, Karl W. ; Hu, Liming ; Meegoda, Jay N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2719-47bc526a5b4e8d916c51509950e814a206e0d87653190fc34260d522efc847d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Computer simulation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Formations</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Methane</topic><topic>Organic materials</topic><topic>Porosity</topic><topic>Shape factor</topic><topic>Slip flow</topic><topic>Spatial distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Pengwei</creatorcontrib><creatorcontrib>Celia, Michael A.</creatorcontrib><creatorcontrib>Bandilla, Karl W.</creatorcontrib><creatorcontrib>Hu, Liming</creatorcontrib><creatorcontrib>Meegoda, Jay N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Pengwei</au><au>Celia, Michael A.</au><au>Bandilla, Karl W.</au><au>Hu, Liming</au><au>Meegoda, Jay N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Pore-Network Simulation Model of Dynamic CO2 Migration in Organic-Rich Shale Formations</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>133</volume><issue>3</issue><spage>479</spage><epage>496</epage><pages>479-496</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>One attractive aspect of CO 2 sequestration in shale formations is the preferential adsorption of CO 2 compared to methane, which may provide enhanced methane production as well as sequestration of carbon dioxide. In this work, a comprehensive theoretical model of CO 2 migration at the pore scale is developed to study CO 2 migration properties in organic-rich shale formations. The proposed model takes into account dynamic competitive adsorption between CO 2 and CH 4 , slip-flow effects due to the nanometer range of pore sizes, and pore-size changes due to adsorption. Because of the high pressure and temperature, the injected CO 2 is in supercritical phase. Pore bodies in the shale matrix are irregular in shape, with roughness along pore wall. The structure of pore body affects the amount of surface areas and associated number of adsorption sites, and hence, a shape factor is proposed in this work to consider the irregularity of pore structure in shale matrix. The sorption of CO 2 leads to an apparent retardation of the migration of CO 2 , which is quantified in this work. The developed pore-network model is extended to consider the impacts of different spatial distributions of the organic materials within the shale matrix.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-020-01434-9</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8522-9864</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0169-3913
ispartof Transport in porous media, 2020-07, Vol.133 (3), p.479-496
issn 0169-3913
1573-1634
language eng
recordid cdi_proquest_journals_2418896871
source Springer Nature - Complete Springer Journals
subjects Adsorption
Carbon dioxide
Carbon sequestration
Civil Engineering
Classical and Continuum Physics
Computer simulation
Earth and Environmental Science
Earth Sciences
Formations
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrology/Water Resources
Industrial Chemistry/Chemical Engineering
Methane
Organic materials
Porosity
Shape factor
Slip flow
Spatial distribution
title A Pore-Network Simulation Model of Dynamic CO2 Migration in Organic-Rich Shale Formations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A02%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Pore-Network%20Simulation%20Model%20of%20Dynamic%20CO2%20Migration%20in%20Organic-Rich%20Shale%20Formations&rft.jtitle=Transport%20in%20porous%20media&rft.au=Zhang,%20Pengwei&rft.date=2020-07-01&rft.volume=133&rft.issue=3&rft.spage=479&rft.epage=496&rft.pages=479-496&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-020-01434-9&rft_dat=%3Cproquest_cross%3E2418896871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418896871&rft_id=info:pmid/&rfr_iscdi=true