A Pore-Network Simulation Model of Dynamic CO2 Migration in Organic-Rich Shale Formations
One attractive aspect of CO 2 sequestration in shale formations is the preferential adsorption of CO 2 compared to methane, which may provide enhanced methane production as well as sequestration of carbon dioxide. In this work, a comprehensive theoretical model of CO 2 migration at the pore scale is...
Gespeichert in:
Veröffentlicht in: | Transport in porous media 2020-07, Vol.133 (3), p.479-496 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 496 |
---|---|
container_issue | 3 |
container_start_page | 479 |
container_title | Transport in porous media |
container_volume | 133 |
creator | Zhang, Pengwei Celia, Michael A. Bandilla, Karl W. Hu, Liming Meegoda, Jay N. |
description | One attractive aspect of CO
2
sequestration in shale formations is the preferential adsorption of CO
2
compared to methane, which may provide enhanced methane production as well as sequestration of carbon dioxide. In this work, a comprehensive theoretical model of CO
2
migration at the pore scale is developed to study CO
2
migration properties in organic-rich shale formations. The proposed model takes into account dynamic competitive adsorption between CO
2
and CH
4
, slip-flow effects due to the nanometer range of pore sizes, and pore-size changes due to adsorption. Because of the high pressure and temperature, the injected CO
2
is in supercritical phase. Pore bodies in the shale matrix are irregular in shape, with roughness along pore wall. The structure of pore body affects the amount of surface areas and associated number of adsorption sites, and hence, a shape factor is proposed in this work to consider the irregularity of pore structure in shale matrix. The sorption of CO
2
leads to an apparent retardation of the migration of CO
2
, which is quantified in this work. The developed pore-network model is extended to consider the impacts of different spatial distributions of the organic materials within the shale matrix. |
doi_str_mv | 10.1007/s11242-020-01434-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2418896871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418896871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2719-47bc526a5b4e8d916c51509950e814a206e0d87653190fc34260d522efc847d3</originalsourceid><addsrcrecordid>eNp9kMFOAjEURRujiYj-gKsmrqt9baczXRIUNQExwsZVUzodKA5TbCGGv3dkTNy5eot7z33JQega6C1Qmt8lACYYoYwSCoILok5QD7KcE5BcnKIeBakIV8DP0UVKa0pbrBA99D7AryE68uJ2XyF-4Jnf7Guz86HBk1C6GocK3x8as_EWD6cMT_wydrFv8DQuTeMtefN2hWcrUzs8CnFzzNMlOqtMndzV7-2j-ehhPnwi4-nj83AwJpbloIjIFzZj0mQL4YpSgbQZZFSpjLoChGFUOloWucw4KFpZLpikZcaYq2wh8pL30U03u43hc-_STq_DPjbtR80EFIWSRQ5ti3UtG0NK0VV6G_3GxIMGqn8M6s6gbg3qo0GtWoh3UGrLzdLFv-l_qG-Z7HER</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418896871</pqid></control><display><type>article</type><title>A Pore-Network Simulation Model of Dynamic CO2 Migration in Organic-Rich Shale Formations</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Pengwei ; Celia, Michael A. ; Bandilla, Karl W. ; Hu, Liming ; Meegoda, Jay N.</creator><creatorcontrib>Zhang, Pengwei ; Celia, Michael A. ; Bandilla, Karl W. ; Hu, Liming ; Meegoda, Jay N.</creatorcontrib><description>One attractive aspect of CO
2
sequestration in shale formations is the preferential adsorption of CO
2
compared to methane, which may provide enhanced methane production as well as sequestration of carbon dioxide. In this work, a comprehensive theoretical model of CO
2
migration at the pore scale is developed to study CO
2
migration properties in organic-rich shale formations. The proposed model takes into account dynamic competitive adsorption between CO
2
and CH
4
, slip-flow effects due to the nanometer range of pore sizes, and pore-size changes due to adsorption. Because of the high pressure and temperature, the injected CO
2
is in supercritical phase. Pore bodies in the shale matrix are irregular in shape, with roughness along pore wall. The structure of pore body affects the amount of surface areas and associated number of adsorption sites, and hence, a shape factor is proposed in this work to consider the irregularity of pore structure in shale matrix. The sorption of CO
2
leads to an apparent retardation of the migration of CO
2
, which is quantified in this work. The developed pore-network model is extended to consider the impacts of different spatial distributions of the organic materials within the shale matrix.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-020-01434-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adsorption ; Carbon dioxide ; Carbon sequestration ; Civil Engineering ; Classical and Continuum Physics ; Computer simulation ; Earth and Environmental Science ; Earth Sciences ; Formations ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Methane ; Organic materials ; Porosity ; Shape factor ; Slip flow ; Spatial distribution</subject><ispartof>Transport in porous media, 2020-07, Vol.133 (3), p.479-496</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2719-47bc526a5b4e8d916c51509950e814a206e0d87653190fc34260d522efc847d3</citedby><cites>FETCH-LOGICAL-c2719-47bc526a5b4e8d916c51509950e814a206e0d87653190fc34260d522efc847d3</cites><orcidid>0000-0001-8522-9864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-020-01434-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-020-01434-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Zhang, Pengwei</creatorcontrib><creatorcontrib>Celia, Michael A.</creatorcontrib><creatorcontrib>Bandilla, Karl W.</creatorcontrib><creatorcontrib>Hu, Liming</creatorcontrib><creatorcontrib>Meegoda, Jay N.</creatorcontrib><title>A Pore-Network Simulation Model of Dynamic CO2 Migration in Organic-Rich Shale Formations</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>One attractive aspect of CO
2
sequestration in shale formations is the preferential adsorption of CO
2
compared to methane, which may provide enhanced methane production as well as sequestration of carbon dioxide. In this work, a comprehensive theoretical model of CO
2
migration at the pore scale is developed to study CO
2
migration properties in organic-rich shale formations. The proposed model takes into account dynamic competitive adsorption between CO
2
and CH
4
, slip-flow effects due to the nanometer range of pore sizes, and pore-size changes due to adsorption. Because of the high pressure and temperature, the injected CO
2
is in supercritical phase. Pore bodies in the shale matrix are irregular in shape, with roughness along pore wall. The structure of pore body affects the amount of surface areas and associated number of adsorption sites, and hence, a shape factor is proposed in this work to consider the irregularity of pore structure in shale matrix. The sorption of CO
2
leads to an apparent retardation of the migration of CO
2
, which is quantified in this work. The developed pore-network model is extended to consider the impacts of different spatial distributions of the organic materials within the shale matrix.</description><subject>Adsorption</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Computer simulation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Formations</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Methane</subject><subject>Organic materials</subject><subject>Porosity</subject><subject>Shape factor</subject><subject>Slip flow</subject><subject>Spatial distribution</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMFOAjEURRujiYj-gKsmrqt9baczXRIUNQExwsZVUzodKA5TbCGGv3dkTNy5eot7z33JQega6C1Qmt8lACYYoYwSCoILok5QD7KcE5BcnKIeBakIV8DP0UVKa0pbrBA99D7AryE68uJ2XyF-4Jnf7Guz86HBk1C6GocK3x8as_EWD6cMT_wydrFv8DQuTeMtefN2hWcrUzs8CnFzzNMlOqtMndzV7-2j-ehhPnwi4-nj83AwJpbloIjIFzZj0mQL4YpSgbQZZFSpjLoChGFUOloWucw4KFpZLpikZcaYq2wh8pL30U03u43hc-_STq_DPjbtR80EFIWSRQ5ti3UtG0NK0VV6G_3GxIMGqn8M6s6gbg3qo0GtWoh3UGrLzdLFv-l_qG-Z7HER</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Zhang, Pengwei</creator><creator>Celia, Michael A.</creator><creator>Bandilla, Karl W.</creator><creator>Hu, Liming</creator><creator>Meegoda, Jay N.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8522-9864</orcidid></search><sort><creationdate>20200701</creationdate><title>A Pore-Network Simulation Model of Dynamic CO2 Migration in Organic-Rich Shale Formations</title><author>Zhang, Pengwei ; Celia, Michael A. ; Bandilla, Karl W. ; Hu, Liming ; Meegoda, Jay N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2719-47bc526a5b4e8d916c51509950e814a206e0d87653190fc34260d522efc847d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Computer simulation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Formations</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Methane</topic><topic>Organic materials</topic><topic>Porosity</topic><topic>Shape factor</topic><topic>Slip flow</topic><topic>Spatial distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Pengwei</creatorcontrib><creatorcontrib>Celia, Michael A.</creatorcontrib><creatorcontrib>Bandilla, Karl W.</creatorcontrib><creatorcontrib>Hu, Liming</creatorcontrib><creatorcontrib>Meegoda, Jay N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Pengwei</au><au>Celia, Michael A.</au><au>Bandilla, Karl W.</au><au>Hu, Liming</au><au>Meegoda, Jay N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Pore-Network Simulation Model of Dynamic CO2 Migration in Organic-Rich Shale Formations</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>133</volume><issue>3</issue><spage>479</spage><epage>496</epage><pages>479-496</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>One attractive aspect of CO
2
sequestration in shale formations is the preferential adsorption of CO
2
compared to methane, which may provide enhanced methane production as well as sequestration of carbon dioxide. In this work, a comprehensive theoretical model of CO
2
migration at the pore scale is developed to study CO
2
migration properties in organic-rich shale formations. The proposed model takes into account dynamic competitive adsorption between CO
2
and CH
4
, slip-flow effects due to the nanometer range of pore sizes, and pore-size changes due to adsorption. Because of the high pressure and temperature, the injected CO
2
is in supercritical phase. Pore bodies in the shale matrix are irregular in shape, with roughness along pore wall. The structure of pore body affects the amount of surface areas and associated number of adsorption sites, and hence, a shape factor is proposed in this work to consider the irregularity of pore structure in shale matrix. The sorption of CO
2
leads to an apparent retardation of the migration of CO
2
, which is quantified in this work. The developed pore-network model is extended to consider the impacts of different spatial distributions of the organic materials within the shale matrix.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-020-01434-9</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8522-9864</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-3913 |
ispartof | Transport in porous media, 2020-07, Vol.133 (3), p.479-496 |
issn | 0169-3913 1573-1634 |
language | eng |
recordid | cdi_proquest_journals_2418896871 |
source | Springer Nature - Complete Springer Journals |
subjects | Adsorption Carbon dioxide Carbon sequestration Civil Engineering Classical and Continuum Physics Computer simulation Earth and Environmental Science Earth Sciences Formations Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hydrology/Water Resources Industrial Chemistry/Chemical Engineering Methane Organic materials Porosity Shape factor Slip flow Spatial distribution |
title | A Pore-Network Simulation Model of Dynamic CO2 Migration in Organic-Rich Shale Formations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A02%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Pore-Network%20Simulation%20Model%20of%20Dynamic%20CO2%20Migration%20in%20Organic-Rich%20Shale%20Formations&rft.jtitle=Transport%20in%20porous%20media&rft.au=Zhang,%20Pengwei&rft.date=2020-07-01&rft.volume=133&rft.issue=3&rft.spage=479&rft.epage=496&rft.pages=479-496&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-020-01434-9&rft_dat=%3Cproquest_cross%3E2418896871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418896871&rft_id=info:pmid/&rfr_iscdi=true |