Demand Control Strategies of a PCM Enhanced Ventilation System for Residential Buildings

A ventilated window system enhanced by phase change material (PCM) has been developed, and its energy-saving potential examined in previous works. In this paper, the ventilation control strategies are further developed, to improve the energy-saving potential of the PCM energy storage. The influence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-06, Vol.10 (12), p.4336, Article 4336
Hauptverfasser: Hu, Yue, Heiselberg, Per Kvols, Larsen, Tine Steen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A ventilated window system enhanced by phase change material (PCM) has been developed, and its energy-saving potential examined in previous works. In this paper, the ventilation control strategies are further developed, to improve the energy-saving potential of the PCM energy storage. The influence of ventilation airflow rate on the energy-saving potential of the PCM storage is firstly studied based on an EnergyPlus model of a sustainable low energy house located in New York. It shows that in summer, the optimized ventilation airflow rate is 300 m(3)/h. The energy-saving of utilizing a ventilated window with PCM energy storage is 10.1% compared to using a stand-alone ventilated window, and 12.0% compared to using a standard window. In winter, the optimized ventilation airflow rate is 102 m(3)/h. The energy-saving of utilizing a ventilated window with PCM energy storage is 26.6% compared to using a stand-alone ventilated window, and 32.8% compared to using a standard window. Based on the optimized ventilation airflow rate, a demand control ventilation strategy, which personalizes the air supply and heat pump setting based on the demand of each room, is proposed and its energy-saving potential examined. The results show that the energy savings of using demand control compared to a constant ventilation airflow rate in the house is 14.7% in summer and 30.4% in winter.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10124336