A Gaussian process machine learning model for cemented rockfill strength prediction at a diamond mine
As a main strategy of backfilling in mining operations, cemented rockfill (CRF) is extensively used because of its high strength and mine waste disposal convenience. The CRF strength has a direct bearing on ground support performance in backfill mining, which necessitates investigating CRF strength...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2020-07, Vol.32 (14), p.9929-9937 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9937 |
---|---|
container_issue | 14 |
container_start_page | 9929 |
container_title | Neural computing & applications |
container_volume | 32 |
creator | Pu, Yuanyuan Apel, Derek B. Chen, Jie Wei, Chong |
description | As a main strategy of backfilling in mining operations, cemented rockfill (CRF) is extensively used because of its high strength and mine waste disposal convenience. The CRF strength has a direct bearing on ground support performance in backfill mining, which necessitates investigating CRF strength determination. This study employed a Gaussian process (GP) machine learning model to reflect the relationship between CRF compressive strength and material components as well as curing age. More than one thousand data from a public database were used to train the GP model with an automatic hyperparameter optimization. A series of laboratory tests prepared eight test samples for our predicting as well as the true values for model validation. The GP model achieved a predicting accuracy with the
r
2
value 0.90 and the MSE value 7.78 based on CRF true values we obtained in the laboratory. In addition, seven test samples’ true values resided inside the 95% confidence interval of the GP prediction. We also constructed three other machine learning models to conduct the same work as the GP model did. The results showed that the GP model performed the best of four models, which demonstrated that the GP model was effective and robust in dealing with time series predicting task. |
doi_str_mv | 10.1007/s00521-019-04517-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2418455614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418455614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-adad2d6d00dfb526c938684580f728613c5c773add2e7c347c296e2b975ba7c63</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA82q-s3ssxS8oeNFzSJPZNnU3W5Mt1H9vdAVvnuYw7_MO8yB0TcktJUTfZUIkoxWhTUWEpLo6nqAZFZxXnMj6FM1II8paCX6OLnLeEUKEquUMwQI_2kPOwUa8T4ODnHFv3TZEwB3YFEPc4H7w0OF2SNhBD3EEj0v0vQ1dh_OYIG7GbaHBBzeGIWI7Yot9sP0QPe5L1SU6a22X4ep3ztHbw_3r8qlavTw-LxerynFZj5X11jOvPCG-XUumXMNrVQtZk1azWlHupNOaW-8ZaMeFdqxRwNaNlmurneJzdDP1llc-DpBHsxsOKZaThglamqQqUuaITSmXhpwTtGafQm_Tp6HEfOs0k05TdJofneZYID5BuYTjBtJf9T_UF97UeXY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418455614</pqid></control><display><type>article</type><title>A Gaussian process machine learning model for cemented rockfill strength prediction at a diamond mine</title><source>Springer Nature - Complete Springer Journals</source><creator>Pu, Yuanyuan ; Apel, Derek B. ; Chen, Jie ; Wei, Chong</creator><creatorcontrib>Pu, Yuanyuan ; Apel, Derek B. ; Chen, Jie ; Wei, Chong</creatorcontrib><description>As a main strategy of backfilling in mining operations, cemented rockfill (CRF) is extensively used because of its high strength and mine waste disposal convenience. The CRF strength has a direct bearing on ground support performance in backfill mining, which necessitates investigating CRF strength determination. This study employed a Gaussian process (GP) machine learning model to reflect the relationship between CRF compressive strength and material components as well as curing age. More than one thousand data from a public database were used to train the GP model with an automatic hyperparameter optimization. A series of laboratory tests prepared eight test samples for our predicting as well as the true values for model validation. The GP model achieved a predicting accuracy with the
r
2
value 0.90 and the MSE value 7.78 based on CRF true values we obtained in the laboratory. In addition, seven test samples’ true values resided inside the 95% confidence interval of the GP prediction. We also constructed three other machine learning models to conduct the same work as the GP model did. The results showed that the GP model performed the best of four models, which demonstrated that the GP model was effective and robust in dealing with time series predicting task.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-019-04517-x</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Backfill ; Cementing ; Compressive strength ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Confidence intervals ; Data Mining and Knowledge Discovery ; Diamond machining ; Diamonds ; Gaussian process ; Goal programming ; Image Processing and Computer Vision ; Laboratories ; Laboratory tests ; Machine learning ; Mine wastes ; Model accuracy ; Optimization ; Original Article ; Probability and Statistics in Computer Science ; Rockfill ; Waste disposal</subject><ispartof>Neural computing & applications, 2020-07, Vol.32 (14), p.9929-9937</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-adad2d6d00dfb526c938684580f728613c5c773add2e7c347c296e2b975ba7c63</citedby><cites>FETCH-LOGICAL-c358t-adad2d6d00dfb526c938684580f728613c5c773add2e7c347c296e2b975ba7c63</cites><orcidid>0000-0002-5402-7036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-019-04517-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-019-04517-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pu, Yuanyuan</creatorcontrib><creatorcontrib>Apel, Derek B.</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Wei, Chong</creatorcontrib><title>A Gaussian process machine learning model for cemented rockfill strength prediction at a diamond mine</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>As a main strategy of backfilling in mining operations, cemented rockfill (CRF) is extensively used because of its high strength and mine waste disposal convenience. The CRF strength has a direct bearing on ground support performance in backfill mining, which necessitates investigating CRF strength determination. This study employed a Gaussian process (GP) machine learning model to reflect the relationship between CRF compressive strength and material components as well as curing age. More than one thousand data from a public database were used to train the GP model with an automatic hyperparameter optimization. A series of laboratory tests prepared eight test samples for our predicting as well as the true values for model validation. The GP model achieved a predicting accuracy with the
r
2
value 0.90 and the MSE value 7.78 based on CRF true values we obtained in the laboratory. In addition, seven test samples’ true values resided inside the 95% confidence interval of the GP prediction. We also constructed three other machine learning models to conduct the same work as the GP model did. The results showed that the GP model performed the best of four models, which demonstrated that the GP model was effective and robust in dealing with time series predicting task.</description><subject>Artificial Intelligence</subject><subject>Backfill</subject><subject>Cementing</subject><subject>Compressive strength</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Confidence intervals</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Diamond machining</subject><subject>Diamonds</subject><subject>Gaussian process</subject><subject>Goal programming</subject><subject>Image Processing and Computer Vision</subject><subject>Laboratories</subject><subject>Laboratory tests</subject><subject>Machine learning</subject><subject>Mine wastes</subject><subject>Model accuracy</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Rockfill</subject><subject>Waste disposal</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPA82q-s3ssxS8oeNFzSJPZNnU3W5Mt1H9vdAVvnuYw7_MO8yB0TcktJUTfZUIkoxWhTUWEpLo6nqAZFZxXnMj6FM1II8paCX6OLnLeEUKEquUMwQI_2kPOwUa8T4ODnHFv3TZEwB3YFEPc4H7w0OF2SNhBD3EEj0v0vQ1dh_OYIG7GbaHBBzeGIWI7Yot9sP0QPe5L1SU6a22X4ep3ztHbw_3r8qlavTw-LxerynFZj5X11jOvPCG-XUumXMNrVQtZk1azWlHupNOaW-8ZaMeFdqxRwNaNlmurneJzdDP1llc-DpBHsxsOKZaThglamqQqUuaITSmXhpwTtGafQm_Tp6HEfOs0k05TdJofneZYID5BuYTjBtJf9T_UF97UeXY</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Pu, Yuanyuan</creator><creator>Apel, Derek B.</creator><creator>Chen, Jie</creator><creator>Wei, Chong</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5402-7036</orcidid></search><sort><creationdate>20200701</creationdate><title>A Gaussian process machine learning model for cemented rockfill strength prediction at a diamond mine</title><author>Pu, Yuanyuan ; Apel, Derek B. ; Chen, Jie ; Wei, Chong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-adad2d6d00dfb526c938684580f728613c5c773add2e7c347c296e2b975ba7c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Backfill</topic><topic>Cementing</topic><topic>Compressive strength</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Confidence intervals</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Diamond machining</topic><topic>Diamonds</topic><topic>Gaussian process</topic><topic>Goal programming</topic><topic>Image Processing and Computer Vision</topic><topic>Laboratories</topic><topic>Laboratory tests</topic><topic>Machine learning</topic><topic>Mine wastes</topic><topic>Model accuracy</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Rockfill</topic><topic>Waste disposal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pu, Yuanyuan</creatorcontrib><creatorcontrib>Apel, Derek B.</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Wei, Chong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pu, Yuanyuan</au><au>Apel, Derek B.</au><au>Chen, Jie</au><au>Wei, Chong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Gaussian process machine learning model for cemented rockfill strength prediction at a diamond mine</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>32</volume><issue>14</issue><spage>9929</spage><epage>9937</epage><pages>9929-9937</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>As a main strategy of backfilling in mining operations, cemented rockfill (CRF) is extensively used because of its high strength and mine waste disposal convenience. The CRF strength has a direct bearing on ground support performance in backfill mining, which necessitates investigating CRF strength determination. This study employed a Gaussian process (GP) machine learning model to reflect the relationship between CRF compressive strength and material components as well as curing age. More than one thousand data from a public database were used to train the GP model with an automatic hyperparameter optimization. A series of laboratory tests prepared eight test samples for our predicting as well as the true values for model validation. The GP model achieved a predicting accuracy with the
r
2
value 0.90 and the MSE value 7.78 based on CRF true values we obtained in the laboratory. In addition, seven test samples’ true values resided inside the 95% confidence interval of the GP prediction. We also constructed three other machine learning models to conduct the same work as the GP model did. The results showed that the GP model performed the best of four models, which demonstrated that the GP model was effective and robust in dealing with time series predicting task.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-019-04517-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5402-7036</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2020-07, Vol.32 (14), p.9929-9937 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2418455614 |
source | Springer Nature - Complete Springer Journals |
subjects | Artificial Intelligence Backfill Cementing Compressive strength Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Confidence intervals Data Mining and Knowledge Discovery Diamond machining Diamonds Gaussian process Goal programming Image Processing and Computer Vision Laboratories Laboratory tests Machine learning Mine wastes Model accuracy Optimization Original Article Probability and Statistics in Computer Science Rockfill Waste disposal |
title | A Gaussian process machine learning model for cemented rockfill strength prediction at a diamond mine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Gaussian%20process%20machine%20learning%20model%20for%20cemented%20rockfill%20strength%20prediction%20at%20a%20diamond%20mine&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Pu,%20Yuanyuan&rft.date=2020-07-01&rft.volume=32&rft.issue=14&rft.spage=9929&rft.epage=9937&rft.pages=9929-9937&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-019-04517-x&rft_dat=%3Cproquest_cross%3E2418455614%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418455614&rft_id=info:pmid/&rfr_iscdi=true |