Metal–organic framework-derived C/Co/Co3O4 nanocomposites with excellent microwave absorption properties in low frequencies

To improve the microwave absorption performance of functional coatings, metal–organic framework (MOF)-based nanocomposites were synthesized via a simple method, including a two-step cooling process. Derived from the ZIF-67 precursor, the nanocomposites consist of C, Co, and C 3 O 4 , and all the thr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2020-07, Vol.31 (14), p.11700-11713
Hauptverfasser: Sun, Yijing, Jia, Hongyuan, Liu, Jinbiao, Yu, Hongying, Jiang, Xuzhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11713
container_issue 14
container_start_page 11700
container_title Journal of materials science. Materials in electronics
container_volume 31
creator Sun, Yijing
Jia, Hongyuan
Liu, Jinbiao
Yu, Hongying
Jiang, Xuzhou
description To improve the microwave absorption performance of functional coatings, metal–organic framework (MOF)-based nanocomposites were synthesized via a simple method, including a two-step cooling process. Derived from the ZIF-67 precursor, the nanocomposites consist of C, Co, and C 3 O 4 , and all the three chemical constituents are effectively combined in nanometer scale. By varying the heat treatment temperature, the structural architecture and chemical composition of the nanocomposites are carefully tailored to achieve the outstanding microwave absorption properties, in particular, for low frequencies. These properties are mainly boosted by the distinguished attenuation performance and an optimal impedance matching condition. When the heat treatment temperature is 800 °C, the sample (CCCO-800, CCCO for Carbon–Cobalt–Cobalt Oxide) possesses the best microwave absorption performance in this research. The maximum reflection loss (RL) of CCCO-800 can reach − 84.75 dB at 6.61 GHz, and the effective absorption bandwidth (RL 
doi_str_mv 10.1007/s10854-020-03721-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2418450894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418450894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c234z-df197191014dae1115f39ac5ef0f951106d7271044ab1470dc204b6facd07b803</originalsourceid><addsrcrecordid>eNp9kMFKJDEQhoOs4Kz6Ap4CnrNWpdOT7uMy7K6CixcFbyGTrta4PUmbtM7ugOA7-IY-yUZnYW9CQUHx_fVX_YwdIXxBAH2SEZpaCZAgoNISxWaHzbDWlVCNvP7EZtDWWqhayj32Oec7AJirqpmxp5802eH1-SWmGxu8432yK1rH9Et0lPwjdXxxsoilqgvFgw3RxdUYs58o87Wfbjn9djQMFCa-8i7FtX0kbpc5pnHyMfAxxZHS5AvuAx_iujjQ_QMFV0YHbLe3Q6bDf32fXX3_drk4FecXP84WX8-Fk5XaiK7HVmOLgKqzhIh1X7XW1dRD39aIMO-01AhK2SUqDZ2ToJbz3roO9LKBap8db_eWa4p3nsxdfEihWBqpsFE1NK0qlNxS5Y2cE_VmTH5l0x-DYN5iNtuYTYnZvMdsNkVUbUW5wOGG0v_VH6j-AtZlg9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418450894</pqid></control><display><type>article</type><title>Metal–organic framework-derived C/Co/Co3O4 nanocomposites with excellent microwave absorption properties in low frequencies</title><source>Springer Nature - Complete Springer Journals</source><creator>Sun, Yijing ; Jia, Hongyuan ; Liu, Jinbiao ; Yu, Hongying ; Jiang, Xuzhou</creator><creatorcontrib>Sun, Yijing ; Jia, Hongyuan ; Liu, Jinbiao ; Yu, Hongying ; Jiang, Xuzhou</creatorcontrib><description>To improve the microwave absorption performance of functional coatings, metal–organic framework (MOF)-based nanocomposites were synthesized via a simple method, including a two-step cooling process. Derived from the ZIF-67 precursor, the nanocomposites consist of C, Co, and C 3 O 4 , and all the three chemical constituents are effectively combined in nanometer scale. By varying the heat treatment temperature, the structural architecture and chemical composition of the nanocomposites are carefully tailored to achieve the outstanding microwave absorption properties, in particular, for low frequencies. These properties are mainly boosted by the distinguished attenuation performance and an optimal impedance matching condition. When the heat treatment temperature is 800 °C, the sample (CCCO-800, CCCO for Carbon–Cobalt–Cobalt Oxide) possesses the best microwave absorption performance in this research. The maximum reflection loss (RL) of CCCO-800 can reach − 84.75 dB at 6.61 GHz, and the effective absorption bandwidth (RL &lt; -10 dB) can be as wide as 8.5 GHz. With the absorber thickness ranging from 1.0 to 5.0 mm, the effective absorption bandwidth of CCCO-800 can cover one half of S band and the whole C, X, and Ku bands. These results show that with an appropriate process control, the nanocomposite absorber can achieve remarkable microwave absorption performance, which makes this type of nanocomposite promising as a functional coating for both civil and military applications.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-03721-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorbers ; Attenuation ; Characterization and Evaluation of Materials ; Chemical composition ; Chemistry and Materials Science ; Cobalt oxides ; Heat treatment ; Impedance matching ; Low frequencies ; Materials Science ; Metal-organic frameworks ; Microwave absorption ; Military applications ; Nanocomposites ; Optical and Electronic Materials ; Process controls ; Properties (attributes) ; Superhigh frequencies</subject><ispartof>Journal of materials science. Materials in electronics, 2020-07, Vol.31 (14), p.11700-11713</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c234z-df197191014dae1115f39ac5ef0f951106d7271044ab1470dc204b6facd07b803</citedby><cites>FETCH-LOGICAL-c234z-df197191014dae1115f39ac5ef0f951106d7271044ab1470dc204b6facd07b803</cites><orcidid>0000-0003-1880-3939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-020-03721-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-020-03721-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Sun, Yijing</creatorcontrib><creatorcontrib>Jia, Hongyuan</creatorcontrib><creatorcontrib>Liu, Jinbiao</creatorcontrib><creatorcontrib>Yu, Hongying</creatorcontrib><creatorcontrib>Jiang, Xuzhou</creatorcontrib><title>Metal–organic framework-derived C/Co/Co3O4 nanocomposites with excellent microwave absorption properties in low frequencies</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>To improve the microwave absorption performance of functional coatings, metal–organic framework (MOF)-based nanocomposites were synthesized via a simple method, including a two-step cooling process. Derived from the ZIF-67 precursor, the nanocomposites consist of C, Co, and C 3 O 4 , and all the three chemical constituents are effectively combined in nanometer scale. By varying the heat treatment temperature, the structural architecture and chemical composition of the nanocomposites are carefully tailored to achieve the outstanding microwave absorption properties, in particular, for low frequencies. These properties are mainly boosted by the distinguished attenuation performance and an optimal impedance matching condition. When the heat treatment temperature is 800 °C, the sample (CCCO-800, CCCO for Carbon–Cobalt–Cobalt Oxide) possesses the best microwave absorption performance in this research. The maximum reflection loss (RL) of CCCO-800 can reach − 84.75 dB at 6.61 GHz, and the effective absorption bandwidth (RL &lt; -10 dB) can be as wide as 8.5 GHz. With the absorber thickness ranging from 1.0 to 5.0 mm, the effective absorption bandwidth of CCCO-800 can cover one half of S band and the whole C, X, and Ku bands. These results show that with an appropriate process control, the nanocomposite absorber can achieve remarkable microwave absorption performance, which makes this type of nanocomposite promising as a functional coating for both civil and military applications.</description><subject>Absorbers</subject><subject>Attenuation</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical composition</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt oxides</subject><subject>Heat treatment</subject><subject>Impedance matching</subject><subject>Low frequencies</subject><subject>Materials Science</subject><subject>Metal-organic frameworks</subject><subject>Microwave absorption</subject><subject>Military applications</subject><subject>Nanocomposites</subject><subject>Optical and Electronic Materials</subject><subject>Process controls</subject><subject>Properties (attributes)</subject><subject>Superhigh frequencies</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMFKJDEQhoOs4Kz6Ap4CnrNWpdOT7uMy7K6CixcFbyGTrta4PUmbtM7ugOA7-IY-yUZnYW9CQUHx_fVX_YwdIXxBAH2SEZpaCZAgoNISxWaHzbDWlVCNvP7EZtDWWqhayj32Oec7AJirqpmxp5802eH1-SWmGxu8432yK1rH9Et0lPwjdXxxsoilqgvFgw3RxdUYs58o87Wfbjn9djQMFCa-8i7FtX0kbpc5pnHyMfAxxZHS5AvuAx_iujjQ_QMFV0YHbLe3Q6bDf32fXX3_drk4FecXP84WX8-Fk5XaiK7HVmOLgKqzhIh1X7XW1dRD39aIMO-01AhK2SUqDZ2ToJbz3roO9LKBap8db_eWa4p3nsxdfEihWBqpsFE1NK0qlNxS5Y2cE_VmTH5l0x-DYN5iNtuYTYnZvMdsNkVUbUW5wOGG0v_VH6j-AtZlg9Q</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Sun, Yijing</creator><creator>Jia, Hongyuan</creator><creator>Liu, Jinbiao</creator><creator>Yu, Hongying</creator><creator>Jiang, Xuzhou</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-1880-3939</orcidid></search><sort><creationdate>20200701</creationdate><title>Metal–organic framework-derived C/Co/Co3O4 nanocomposites with excellent microwave absorption properties in low frequencies</title><author>Sun, Yijing ; Jia, Hongyuan ; Liu, Jinbiao ; Yu, Hongying ; Jiang, Xuzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c234z-df197191014dae1115f39ac5ef0f951106d7271044ab1470dc204b6facd07b803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorbers</topic><topic>Attenuation</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical composition</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt oxides</topic><topic>Heat treatment</topic><topic>Impedance matching</topic><topic>Low frequencies</topic><topic>Materials Science</topic><topic>Metal-organic frameworks</topic><topic>Microwave absorption</topic><topic>Military applications</topic><topic>Nanocomposites</topic><topic>Optical and Electronic Materials</topic><topic>Process controls</topic><topic>Properties (attributes)</topic><topic>Superhigh frequencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yijing</creatorcontrib><creatorcontrib>Jia, Hongyuan</creatorcontrib><creatorcontrib>Liu, Jinbiao</creatorcontrib><creatorcontrib>Yu, Hongying</creatorcontrib><creatorcontrib>Jiang, Xuzhou</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yijing</au><au>Jia, Hongyuan</au><au>Liu, Jinbiao</au><au>Yu, Hongying</au><au>Jiang, Xuzhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal–organic framework-derived C/Co/Co3O4 nanocomposites with excellent microwave absorption properties in low frequencies</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>31</volume><issue>14</issue><spage>11700</spage><epage>11713</epage><pages>11700-11713</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>To improve the microwave absorption performance of functional coatings, metal–organic framework (MOF)-based nanocomposites were synthesized via a simple method, including a two-step cooling process. Derived from the ZIF-67 precursor, the nanocomposites consist of C, Co, and C 3 O 4 , and all the three chemical constituents are effectively combined in nanometer scale. By varying the heat treatment temperature, the structural architecture and chemical composition of the nanocomposites are carefully tailored to achieve the outstanding microwave absorption properties, in particular, for low frequencies. These properties are mainly boosted by the distinguished attenuation performance and an optimal impedance matching condition. When the heat treatment temperature is 800 °C, the sample (CCCO-800, CCCO for Carbon–Cobalt–Cobalt Oxide) possesses the best microwave absorption performance in this research. The maximum reflection loss (RL) of CCCO-800 can reach − 84.75 dB at 6.61 GHz, and the effective absorption bandwidth (RL &lt; -10 dB) can be as wide as 8.5 GHz. With the absorber thickness ranging from 1.0 to 5.0 mm, the effective absorption bandwidth of CCCO-800 can cover one half of S band and the whole C, X, and Ku bands. These results show that with an appropriate process control, the nanocomposite absorber can achieve remarkable microwave absorption performance, which makes this type of nanocomposite promising as a functional coating for both civil and military applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-03721-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1880-3939</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2020-07, Vol.31 (14), p.11700-11713
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2418450894
source Springer Nature - Complete Springer Journals
subjects Absorbers
Attenuation
Characterization and Evaluation of Materials
Chemical composition
Chemistry and Materials Science
Cobalt oxides
Heat treatment
Impedance matching
Low frequencies
Materials Science
Metal-organic frameworks
Microwave absorption
Military applications
Nanocomposites
Optical and Electronic Materials
Process controls
Properties (attributes)
Superhigh frequencies
title Metal–organic framework-derived C/Co/Co3O4 nanocomposites with excellent microwave absorption properties in low frequencies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%E2%80%93organic%20framework-derived%20C/Co/Co3O4%20nanocomposites%20with%20excellent%20microwave%20absorption%20properties%20in%20low%20frequencies&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Sun,%20Yijing&rft.date=2020-07-01&rft.volume=31&rft.issue=14&rft.spage=11700&rft.epage=11713&rft.pages=11700-11713&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-03721-z&rft_dat=%3Cproquest_cross%3E2418450894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418450894&rft_id=info:pmid/&rfr_iscdi=true