Metal–organic framework-derived C/Co/Co3O4 nanocomposites with excellent microwave absorption properties in low frequencies
To improve the microwave absorption performance of functional coatings, metal–organic framework (MOF)-based nanocomposites were synthesized via a simple method, including a two-step cooling process. Derived from the ZIF-67 precursor, the nanocomposites consist of C, Co, and C 3 O 4 , and all the thr...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2020-07, Vol.31 (14), p.11700-11713 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11713 |
---|---|
container_issue | 14 |
container_start_page | 11700 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 31 |
creator | Sun, Yijing Jia, Hongyuan Liu, Jinbiao Yu, Hongying Jiang, Xuzhou |
description | To improve the microwave absorption performance of functional coatings, metal–organic framework (MOF)-based nanocomposites were synthesized via a simple method, including a two-step cooling process. Derived from the ZIF-67 precursor, the nanocomposites consist of C, Co, and C
3
O
4
, and all the three chemical constituents are effectively combined in nanometer scale. By varying the heat treatment temperature, the structural architecture and chemical composition of the nanocomposites are carefully tailored to achieve the outstanding microwave absorption properties, in particular, for low frequencies. These properties are mainly boosted by the distinguished attenuation performance and an optimal impedance matching condition. When the heat treatment temperature is 800 °C, the sample (CCCO-800, CCCO for Carbon–Cobalt–Cobalt Oxide) possesses the best microwave absorption performance in this research. The maximum reflection loss (RL) of CCCO-800 can reach − 84.75 dB at 6.61 GHz, and the effective absorption bandwidth (RL |
doi_str_mv | 10.1007/s10854-020-03721-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2418450894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418450894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c234z-df197191014dae1115f39ac5ef0f951106d7271044ab1470dc204b6facd07b803</originalsourceid><addsrcrecordid>eNp9kMFKJDEQhoOs4Kz6Ap4CnrNWpdOT7uMy7K6CixcFbyGTrta4PUmbtM7ugOA7-IY-yUZnYW9CQUHx_fVX_YwdIXxBAH2SEZpaCZAgoNISxWaHzbDWlVCNvP7EZtDWWqhayj32Oec7AJirqpmxp5802eH1-SWmGxu8432yK1rH9Et0lPwjdXxxsoilqgvFgw3RxdUYs58o87Wfbjn9djQMFCa-8i7FtX0kbpc5pnHyMfAxxZHS5AvuAx_iujjQ_QMFV0YHbLe3Q6bDf32fXX3_drk4FecXP84WX8-Fk5XaiK7HVmOLgKqzhIh1X7XW1dRD39aIMO-01AhK2SUqDZ2ToJbz3roO9LKBap8db_eWa4p3nsxdfEihWBqpsFE1NK0qlNxS5Y2cE_VmTH5l0x-DYN5iNtuYTYnZvMdsNkVUbUW5wOGG0v_VH6j-AtZlg9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418450894</pqid></control><display><type>article</type><title>Metal–organic framework-derived C/Co/Co3O4 nanocomposites with excellent microwave absorption properties in low frequencies</title><source>Springer Nature - Complete Springer Journals</source><creator>Sun, Yijing ; Jia, Hongyuan ; Liu, Jinbiao ; Yu, Hongying ; Jiang, Xuzhou</creator><creatorcontrib>Sun, Yijing ; Jia, Hongyuan ; Liu, Jinbiao ; Yu, Hongying ; Jiang, Xuzhou</creatorcontrib><description>To improve the microwave absorption performance of functional coatings, metal–organic framework (MOF)-based nanocomposites were synthesized via a simple method, including a two-step cooling process. Derived from the ZIF-67 precursor, the nanocomposites consist of C, Co, and C
3
O
4
, and all the three chemical constituents are effectively combined in nanometer scale. By varying the heat treatment temperature, the structural architecture and chemical composition of the nanocomposites are carefully tailored to achieve the outstanding microwave absorption properties, in particular, for low frequencies. These properties are mainly boosted by the distinguished attenuation performance and an optimal impedance matching condition. When the heat treatment temperature is 800 °C, the sample (CCCO-800, CCCO for Carbon–Cobalt–Cobalt Oxide) possesses the best microwave absorption performance in this research. The maximum reflection loss (RL) of CCCO-800 can reach − 84.75 dB at 6.61 GHz, and the effective absorption bandwidth (RL < -10 dB) can be as wide as 8.5 GHz. With the absorber thickness ranging from 1.0 to 5.0 mm, the effective absorption bandwidth of CCCO-800 can cover one half of S band and the whole C, X, and Ku bands. These results show that with an appropriate process control, the nanocomposite absorber can achieve remarkable microwave absorption performance, which makes this type of nanocomposite promising as a functional coating for both civil and military applications.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-03721-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorbers ; Attenuation ; Characterization and Evaluation of Materials ; Chemical composition ; Chemistry and Materials Science ; Cobalt oxides ; Heat treatment ; Impedance matching ; Low frequencies ; Materials Science ; Metal-organic frameworks ; Microwave absorption ; Military applications ; Nanocomposites ; Optical and Electronic Materials ; Process controls ; Properties (attributes) ; Superhigh frequencies</subject><ispartof>Journal of materials science. Materials in electronics, 2020-07, Vol.31 (14), p.11700-11713</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c234z-df197191014dae1115f39ac5ef0f951106d7271044ab1470dc204b6facd07b803</citedby><cites>FETCH-LOGICAL-c234z-df197191014dae1115f39ac5ef0f951106d7271044ab1470dc204b6facd07b803</cites><orcidid>0000-0003-1880-3939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-020-03721-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-020-03721-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Sun, Yijing</creatorcontrib><creatorcontrib>Jia, Hongyuan</creatorcontrib><creatorcontrib>Liu, Jinbiao</creatorcontrib><creatorcontrib>Yu, Hongying</creatorcontrib><creatorcontrib>Jiang, Xuzhou</creatorcontrib><title>Metal–organic framework-derived C/Co/Co3O4 nanocomposites with excellent microwave absorption properties in low frequencies</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>To improve the microwave absorption performance of functional coatings, metal–organic framework (MOF)-based nanocomposites were synthesized via a simple method, including a two-step cooling process. Derived from the ZIF-67 precursor, the nanocomposites consist of C, Co, and C
3
O
4
, and all the three chemical constituents are effectively combined in nanometer scale. By varying the heat treatment temperature, the structural architecture and chemical composition of the nanocomposites are carefully tailored to achieve the outstanding microwave absorption properties, in particular, for low frequencies. These properties are mainly boosted by the distinguished attenuation performance and an optimal impedance matching condition. When the heat treatment temperature is 800 °C, the sample (CCCO-800, CCCO for Carbon–Cobalt–Cobalt Oxide) possesses the best microwave absorption performance in this research. The maximum reflection loss (RL) of CCCO-800 can reach − 84.75 dB at 6.61 GHz, and the effective absorption bandwidth (RL < -10 dB) can be as wide as 8.5 GHz. With the absorber thickness ranging from 1.0 to 5.0 mm, the effective absorption bandwidth of CCCO-800 can cover one half of S band and the whole C, X, and Ku bands. These results show that with an appropriate process control, the nanocomposite absorber can achieve remarkable microwave absorption performance, which makes this type of nanocomposite promising as a functional coating for both civil and military applications.</description><subject>Absorbers</subject><subject>Attenuation</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical composition</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt oxides</subject><subject>Heat treatment</subject><subject>Impedance matching</subject><subject>Low frequencies</subject><subject>Materials Science</subject><subject>Metal-organic frameworks</subject><subject>Microwave absorption</subject><subject>Military applications</subject><subject>Nanocomposites</subject><subject>Optical and Electronic Materials</subject><subject>Process controls</subject><subject>Properties (attributes)</subject><subject>Superhigh frequencies</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMFKJDEQhoOs4Kz6Ap4CnrNWpdOT7uMy7K6CixcFbyGTrta4PUmbtM7ugOA7-IY-yUZnYW9CQUHx_fVX_YwdIXxBAH2SEZpaCZAgoNISxWaHzbDWlVCNvP7EZtDWWqhayj32Oec7AJirqpmxp5802eH1-SWmGxu8432yK1rH9Et0lPwjdXxxsoilqgvFgw3RxdUYs58o87Wfbjn9djQMFCa-8i7FtX0kbpc5pnHyMfAxxZHS5AvuAx_iujjQ_QMFV0YHbLe3Q6bDf32fXX3_drk4FecXP84WX8-Fk5XaiK7HVmOLgKqzhIh1X7XW1dRD39aIMO-01AhK2SUqDZ2ToJbz3roO9LKBap8db_eWa4p3nsxdfEihWBqpsFE1NK0qlNxS5Y2cE_VmTH5l0x-DYN5iNtuYTYnZvMdsNkVUbUW5wOGG0v_VH6j-AtZlg9Q</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Sun, Yijing</creator><creator>Jia, Hongyuan</creator><creator>Liu, Jinbiao</creator><creator>Yu, Hongying</creator><creator>Jiang, Xuzhou</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-1880-3939</orcidid></search><sort><creationdate>20200701</creationdate><title>Metal–organic framework-derived C/Co/Co3O4 nanocomposites with excellent microwave absorption properties in low frequencies</title><author>Sun, Yijing ; Jia, Hongyuan ; Liu, Jinbiao ; Yu, Hongying ; Jiang, Xuzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c234z-df197191014dae1115f39ac5ef0f951106d7271044ab1470dc204b6facd07b803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorbers</topic><topic>Attenuation</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical composition</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt oxides</topic><topic>Heat treatment</topic><topic>Impedance matching</topic><topic>Low frequencies</topic><topic>Materials Science</topic><topic>Metal-organic frameworks</topic><topic>Microwave absorption</topic><topic>Military applications</topic><topic>Nanocomposites</topic><topic>Optical and Electronic Materials</topic><topic>Process controls</topic><topic>Properties (attributes)</topic><topic>Superhigh frequencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yijing</creatorcontrib><creatorcontrib>Jia, Hongyuan</creatorcontrib><creatorcontrib>Liu, Jinbiao</creatorcontrib><creatorcontrib>Yu, Hongying</creatorcontrib><creatorcontrib>Jiang, Xuzhou</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yijing</au><au>Jia, Hongyuan</au><au>Liu, Jinbiao</au><au>Yu, Hongying</au><au>Jiang, Xuzhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal–organic framework-derived C/Co/Co3O4 nanocomposites with excellent microwave absorption properties in low frequencies</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>31</volume><issue>14</issue><spage>11700</spage><epage>11713</epage><pages>11700-11713</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>To improve the microwave absorption performance of functional coatings, metal–organic framework (MOF)-based nanocomposites were synthesized via a simple method, including a two-step cooling process. Derived from the ZIF-67 precursor, the nanocomposites consist of C, Co, and C
3
O
4
, and all the three chemical constituents are effectively combined in nanometer scale. By varying the heat treatment temperature, the structural architecture and chemical composition of the nanocomposites are carefully tailored to achieve the outstanding microwave absorption properties, in particular, for low frequencies. These properties are mainly boosted by the distinguished attenuation performance and an optimal impedance matching condition. When the heat treatment temperature is 800 °C, the sample (CCCO-800, CCCO for Carbon–Cobalt–Cobalt Oxide) possesses the best microwave absorption performance in this research. The maximum reflection loss (RL) of CCCO-800 can reach − 84.75 dB at 6.61 GHz, and the effective absorption bandwidth (RL < -10 dB) can be as wide as 8.5 GHz. With the absorber thickness ranging from 1.0 to 5.0 mm, the effective absorption bandwidth of CCCO-800 can cover one half of S band and the whole C, X, and Ku bands. These results show that with an appropriate process control, the nanocomposite absorber can achieve remarkable microwave absorption performance, which makes this type of nanocomposite promising as a functional coating for both civil and military applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-03721-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1880-3939</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2020-07, Vol.31 (14), p.11700-11713 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2418450894 |
source | Springer Nature - Complete Springer Journals |
subjects | Absorbers Attenuation Characterization and Evaluation of Materials Chemical composition Chemistry and Materials Science Cobalt oxides Heat treatment Impedance matching Low frequencies Materials Science Metal-organic frameworks Microwave absorption Military applications Nanocomposites Optical and Electronic Materials Process controls Properties (attributes) Superhigh frequencies |
title | Metal–organic framework-derived C/Co/Co3O4 nanocomposites with excellent microwave absorption properties in low frequencies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%E2%80%93organic%20framework-derived%20C/Co/Co3O4%20nanocomposites%20with%20excellent%20microwave%20absorption%20properties%20in%20low%20frequencies&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Sun,%20Yijing&rft.date=2020-07-01&rft.volume=31&rft.issue=14&rft.spage=11700&rft.epage=11713&rft.pages=11700-11713&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-03721-z&rft_dat=%3Cproquest_cross%3E2418450894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418450894&rft_id=info:pmid/&rfr_iscdi=true |