Design of fractional swarming strategy for solution of optimal reactive power dispatch

Optimal reactive power dispatch (RPD) for reducing the real power losses of the transmission system is one of the paramount concerns for the research community to investigate the efficiency of power systems. In this paper, strength of meta-heuristic computing paradigm based on fractional-order Darwi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2020-07, Vol.32 (14), p.10501-10518
Hauptverfasser: Muhammad, Yasir, Khan, Rahimdad, Ullah, Farman, Rehman, Ata ur, Aslam, Muhammad Saeed, Raja, Muhammad Asif Zahoor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10518
container_issue 14
container_start_page 10501
container_title Neural computing & applications
container_volume 32
creator Muhammad, Yasir
Khan, Rahimdad
Ullah, Farman
Rehman, Ata ur
Aslam, Muhammad Saeed
Raja, Muhammad Asif Zahoor
description Optimal reactive power dispatch (RPD) for reducing the real power losses of the transmission system is one of the paramount concerns for the research community to investigate the efficiency of power systems. In this paper, strength of meta-heuristic computing paradigm based on fractional-order Darwinian particle swarm optimization (FO-DPSO) is exploited for optimization of RPD problems in energy sector. The fitness functions including line loss minimization and voltage deviation (voltage profile index) are constructed to find the optimal reactive power flow for IEEE 30- and 57-bus test systems. The rich heritage of fractional evolutionary computing through variants of FO-DPSO is applied to minimization problem of optimal power flow by determination of control variables in terms of VAR compensators, bus voltages and transformer tap settings. Comparison of the results shows that fractional swarming intelligence outperformed the state-of-the-art counterparts by means of both line loss minimization and voltage deviation. Superiority of the proposed scheme is also validated for different degrees of freedom in the optimal RPD problems.
doi_str_mv 10.1007/s00521-019-04589-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2418450178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418450178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-8d7ed1ba85f4822d7b0351fde8f8b6c58ccf13127d17e437ab8b0b286e9f5a673</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ6MX7GzROUpVWIDbC0nsUOqNg52QtW_xyFI7FjNYs65mrkIXRK4JgDyJgIISjIgRQZcqCIrjtCCcMYyBkIdowUUPK1zzk7RWYwbAOC5Egv0fmdj23TYO-yCqYbWd2aL496EXds1OA7BDLY5YOcDjn47TsAE-35od4kMdpK-LO793gZct7E3Q_Vxjk6c2UZ78TuX6O3h_nX1lK1fHp9Xt-usYpIOmaqlrUlplHBcUVrLEpggrrbKqTKvhKoqRxihsibSciZNqUooqcpt4YTJJVuiqzm3D_5ztHHQGz-G9ELUlBPFBRCpEkVnqgo-xmCd7kO6Phw0AT31p-f-dOpP__SniySxWYoJ7hob_qL_sb4BZgN0YQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418450178</pqid></control><display><type>article</type><title>Design of fractional swarming strategy for solution of optimal reactive power dispatch</title><source>SpringerLink Journals - AutoHoldings</source><creator>Muhammad, Yasir ; Khan, Rahimdad ; Ullah, Farman ; Rehman, Ata ur ; Aslam, Muhammad Saeed ; Raja, Muhammad Asif Zahoor</creator><creatorcontrib>Muhammad, Yasir ; Khan, Rahimdad ; Ullah, Farman ; Rehman, Ata ur ; Aslam, Muhammad Saeed ; Raja, Muhammad Asif Zahoor</creatorcontrib><description>Optimal reactive power dispatch (RPD) for reducing the real power losses of the transmission system is one of the paramount concerns for the research community to investigate the efficiency of power systems. In this paper, strength of meta-heuristic computing paradigm based on fractional-order Darwinian particle swarm optimization (FO-DPSO) is exploited for optimization of RPD problems in energy sector. The fitness functions including line loss minimization and voltage deviation (voltage profile index) are constructed to find the optimal reactive power flow for IEEE 30- and 57-bus test systems. The rich heritage of fractional evolutionary computing through variants of FO-DPSO is applied to minimization problem of optimal power flow by determination of control variables in terms of VAR compensators, bus voltages and transformer tap settings. Comparison of the results shows that fractional swarming intelligence outperformed the state-of-the-art counterparts by means of both line loss minimization and voltage deviation. Superiority of the proposed scheme is also validated for different degrees of freedom in the optimal RPD problems.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-019-04589-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Compensators ; Computation ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Deviation ; Electric potential ; Energy conservation ; Evolutionary algorithms ; Heuristic methods ; Image Processing and Computer Vision ; Original Article ; Particle swarm optimization ; Power dispatch ; Power flow ; Power loss ; Probability and Statistics in Computer Science ; Reactive power ; Swarm intelligence ; Swarming ; Voltage</subject><ispartof>Neural computing &amp; applications, 2020-07, Vol.32 (14), p.10501-10518</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-8d7ed1ba85f4822d7b0351fde8f8b6c58ccf13127d17e437ab8b0b286e9f5a673</citedby><cites>FETCH-LOGICAL-c372t-8d7ed1ba85f4822d7b0351fde8f8b6c58ccf13127d17e437ab8b0b286e9f5a673</cites><orcidid>0000-0001-6219-4910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-019-04589-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-019-04589-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Muhammad, Yasir</creatorcontrib><creatorcontrib>Khan, Rahimdad</creatorcontrib><creatorcontrib>Ullah, Farman</creatorcontrib><creatorcontrib>Rehman, Ata ur</creatorcontrib><creatorcontrib>Aslam, Muhammad Saeed</creatorcontrib><creatorcontrib>Raja, Muhammad Asif Zahoor</creatorcontrib><title>Design of fractional swarming strategy for solution of optimal reactive power dispatch</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>Optimal reactive power dispatch (RPD) for reducing the real power losses of the transmission system is one of the paramount concerns for the research community to investigate the efficiency of power systems. In this paper, strength of meta-heuristic computing paradigm based on fractional-order Darwinian particle swarm optimization (FO-DPSO) is exploited for optimization of RPD problems in energy sector. The fitness functions including line loss minimization and voltage deviation (voltage profile index) are constructed to find the optimal reactive power flow for IEEE 30- and 57-bus test systems. The rich heritage of fractional evolutionary computing through variants of FO-DPSO is applied to minimization problem of optimal power flow by determination of control variables in terms of VAR compensators, bus voltages and transformer tap settings. Comparison of the results shows that fractional swarming intelligence outperformed the state-of-the-art counterparts by means of both line loss minimization and voltage deviation. Superiority of the proposed scheme is also validated for different degrees of freedom in the optimal RPD problems.</description><subject>Artificial Intelligence</subject><subject>Compensators</subject><subject>Computation</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Deviation</subject><subject>Electric potential</subject><subject>Energy conservation</subject><subject>Evolutionary algorithms</subject><subject>Heuristic methods</subject><subject>Image Processing and Computer Vision</subject><subject>Original Article</subject><subject>Particle swarm optimization</subject><subject>Power dispatch</subject><subject>Power flow</subject><subject>Power loss</subject><subject>Probability and Statistics in Computer Science</subject><subject>Reactive power</subject><subject>Swarm intelligence</subject><subject>Swarming</subject><subject>Voltage</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ6MX7GzROUpVWIDbC0nsUOqNg52QtW_xyFI7FjNYs65mrkIXRK4JgDyJgIISjIgRQZcqCIrjtCCcMYyBkIdowUUPK1zzk7RWYwbAOC5Egv0fmdj23TYO-yCqYbWd2aL496EXds1OA7BDLY5YOcDjn47TsAE-35od4kMdpK-LO793gZct7E3Q_Vxjk6c2UZ78TuX6O3h_nX1lK1fHp9Xt-usYpIOmaqlrUlplHBcUVrLEpggrrbKqTKvhKoqRxihsibSciZNqUooqcpt4YTJJVuiqzm3D_5ztHHQGz-G9ELUlBPFBRCpEkVnqgo-xmCd7kO6Phw0AT31p-f-dOpP__SniySxWYoJ7hob_qL_sb4BZgN0YQ</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Muhammad, Yasir</creator><creator>Khan, Rahimdad</creator><creator>Ullah, Farman</creator><creator>Rehman, Ata ur</creator><creator>Aslam, Muhammad Saeed</creator><creator>Raja, Muhammad Asif Zahoor</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6219-4910</orcidid></search><sort><creationdate>20200701</creationdate><title>Design of fractional swarming strategy for solution of optimal reactive power dispatch</title><author>Muhammad, Yasir ; Khan, Rahimdad ; Ullah, Farman ; Rehman, Ata ur ; Aslam, Muhammad Saeed ; Raja, Muhammad Asif Zahoor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-8d7ed1ba85f4822d7b0351fde8f8b6c58ccf13127d17e437ab8b0b286e9f5a673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Compensators</topic><topic>Computation</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Deviation</topic><topic>Electric potential</topic><topic>Energy conservation</topic><topic>Evolutionary algorithms</topic><topic>Heuristic methods</topic><topic>Image Processing and Computer Vision</topic><topic>Original Article</topic><topic>Particle swarm optimization</topic><topic>Power dispatch</topic><topic>Power flow</topic><topic>Power loss</topic><topic>Probability and Statistics in Computer Science</topic><topic>Reactive power</topic><topic>Swarm intelligence</topic><topic>Swarming</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muhammad, Yasir</creatorcontrib><creatorcontrib>Khan, Rahimdad</creatorcontrib><creatorcontrib>Ullah, Farman</creatorcontrib><creatorcontrib>Rehman, Ata ur</creatorcontrib><creatorcontrib>Aslam, Muhammad Saeed</creatorcontrib><creatorcontrib>Raja, Muhammad Asif Zahoor</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muhammad, Yasir</au><au>Khan, Rahimdad</au><au>Ullah, Farman</au><au>Rehman, Ata ur</au><au>Aslam, Muhammad Saeed</au><au>Raja, Muhammad Asif Zahoor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of fractional swarming strategy for solution of optimal reactive power dispatch</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>32</volume><issue>14</issue><spage>10501</spage><epage>10518</epage><pages>10501-10518</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Optimal reactive power dispatch (RPD) for reducing the real power losses of the transmission system is one of the paramount concerns for the research community to investigate the efficiency of power systems. In this paper, strength of meta-heuristic computing paradigm based on fractional-order Darwinian particle swarm optimization (FO-DPSO) is exploited for optimization of RPD problems in energy sector. The fitness functions including line loss minimization and voltage deviation (voltage profile index) are constructed to find the optimal reactive power flow for IEEE 30- and 57-bus test systems. The rich heritage of fractional evolutionary computing through variants of FO-DPSO is applied to minimization problem of optimal power flow by determination of control variables in terms of VAR compensators, bus voltages and transformer tap settings. Comparison of the results shows that fractional swarming intelligence outperformed the state-of-the-art counterparts by means of both line loss minimization and voltage deviation. Superiority of the proposed scheme is also validated for different degrees of freedom in the optimal RPD problems.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-019-04589-9</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-6219-4910</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2020-07, Vol.32 (14), p.10501-10518
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2418450178
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Compensators
Computation
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Deviation
Electric potential
Energy conservation
Evolutionary algorithms
Heuristic methods
Image Processing and Computer Vision
Original Article
Particle swarm optimization
Power dispatch
Power flow
Power loss
Probability and Statistics in Computer Science
Reactive power
Swarm intelligence
Swarming
Voltage
title Design of fractional swarming strategy for solution of optimal reactive power dispatch
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A20%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20fractional%20swarming%20strategy%20for%20solution%20of%20optimal%20reactive%20power%20dispatch&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Muhammad,%20Yasir&rft.date=2020-07-01&rft.volume=32&rft.issue=14&rft.spage=10501&rft.epage=10518&rft.pages=10501-10518&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-019-04589-9&rft_dat=%3Cproquest_cross%3E2418450178%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418450178&rft_id=info:pmid/&rfr_iscdi=true