On Reconfiguring 5G Network Slices
The virtual resources of 5G networks are expected to scale and support migration to other locations within the substrate. In this context, a configuration for 5G network slices details the instantaneous mapping of the virtual resources across all slices on the substrate, and a feasible configuration...
Gespeichert in:
Veröffentlicht in: | IEEE journal on selected areas in communications 2020-07, Vol.38 (7), p.1542-1554 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1554 |
---|---|
container_issue | 7 |
container_start_page | 1542 |
container_title | IEEE journal on selected areas in communications |
container_volume | 38 |
creator | Pozza, Matteo Nicholson, Patrick K. Lugones, Diego F. Rao, Ashwin Flinck, Hannu Tarkoma, Sasu |
description | The virtual resources of 5G networks are expected to scale and support migration to other locations within the substrate. In this context, a configuration for 5G network slices details the instantaneous mapping of the virtual resources across all slices on the substrate, and a feasible configuration satisfies the Service-Level Objectives (SLOs) without overloading the substrate. Reconfiguring a network from a given source configuration to the desired target configuration involves identifying an ordered sequence of feasible configurations from the source to the target. The proposed solutions for finding such a sequence are optimized for data centers and cannot be used as-is for reconfiguring 5G network slices. We present Matryoshka , our divide-and-conquer approach for finding a sequence of feasible configurations that can be used to reconfigure 5G network slices. Unlike previous approaches, Matryoshka also considers the bandwidth and latency constraints between the network functions of network slices. Evaluating Matryoshka required a dataset of pairs of source and target configurations. Because such a dataset is currently unavailable, we analyze proof of concept roll-outs, trends in standardization bodies, and research sources to compile an input dataset. On using Matryoshka on our dataset, we observe that it yields close-to-optimal reconfiguration sequences 10X faster than existing approaches. |
doi_str_mv | 10.1109/JSAC.2020.2986898 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2418419321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9062471</ieee_id><sourcerecordid>2418419321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-42f30e542ef4abdec877e523ebd550f5c087c4a48691ac9a092cc6ddb3439d23</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsFZ_gLgJuk58bz6SmWUpWpViwXY_JJOXklqTOpMg_nsTWlzdzbn3wmHsFiFBBPP4tp7NEw4cEm50qo0-YxNUSscAoM_ZBDIhYp1hesmuQtgBoJSaT9j9qok-yLVNVW97XzfbSC2id-p-Wv8Zrfe1o3DNLqp8H-jmlFO2eX7azF_i5WrxOp8tYydE2sWSVwJISU6VzIuSnM4yUlxQUSoFlXKgMydzqVODuTM5GO5cWpaFkMKUXEzZw3H24NvvnkJnd23vm-HRcolaohEcBwqPlPNtCJ4qe_D1V-5_LYIdTdjRhB1N2JOJoXN37NRE9M8bSLnMUPwBdMNX1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418419321</pqid></control><display><type>article</type><title>On Reconfiguring 5G Network Slices</title><source>IEEE Electronic Library (IEL)</source><creator>Pozza, Matteo ; Nicholson, Patrick K. ; Lugones, Diego F. ; Rao, Ashwin ; Flinck, Hannu ; Tarkoma, Sasu</creator><creatorcontrib>Pozza, Matteo ; Nicholson, Patrick K. ; Lugones, Diego F. ; Rao, Ashwin ; Flinck, Hannu ; Tarkoma, Sasu</creatorcontrib><description>The virtual resources of 5G networks are expected to scale and support migration to other locations within the substrate. In this context, a configuration for 5G network slices details the instantaneous mapping of the virtual resources across all slices on the substrate, and a feasible configuration satisfies the Service-Level Objectives (SLOs) without overloading the substrate. Reconfiguring a network from a given source configuration to the desired target configuration involves identifying an ordered sequence of feasible configurations from the source to the target. The proposed solutions for finding such a sequence are optimized for data centers and cannot be used as-is for reconfiguring 5G network slices. We present Matryoshka , our divide-and-conquer approach for finding a sequence of feasible configurations that can be used to reconfigure 5G network slices. Unlike previous approaches, Matryoshka also considers the bandwidth and latency constraints between the network functions of network slices. Evaluating Matryoshka required a dataset of pairs of source and target configurations. Because such a dataset is currently unavailable, we analyze proof of concept roll-outs, trends in standardization bodies, and research sources to compile an input dataset. On using Matryoshka on our dataset, we observe that it yields close-to-optimal reconfiguration sequences 10X faster than existing approaches.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2020.2986898</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>5G mobile communication ; Bandwidth ; Configurations ; Data centers ; Datasets ; Mapping ; Network Function Virtualization (NFV) ; Network latency ; network reconfiguration ; Network slicing ; Reconfiguration ; Standardization ; Substrates ; Virtual Machine (VM) migration ; Virtual machining ; Virtual networks ; Wireless networks</subject><ispartof>IEEE journal on selected areas in communications, 2020-07, Vol.38 (7), p.1542-1554</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-42f30e542ef4abdec877e523ebd550f5c087c4a48691ac9a092cc6ddb3439d23</citedby><cites>FETCH-LOGICAL-c336t-42f30e542ef4abdec877e523ebd550f5c087c4a48691ac9a092cc6ddb3439d23</cites><orcidid>0000-0001-5280-3428 ; 0000-0001-9619-6682 ; 0000-0002-9688-7093 ; 0000-0001-9792-2199 ; 0000-0001-5867-5973 ; 0000-0003-4220-3650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9062471$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9062471$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pozza, Matteo</creatorcontrib><creatorcontrib>Nicholson, Patrick K.</creatorcontrib><creatorcontrib>Lugones, Diego F.</creatorcontrib><creatorcontrib>Rao, Ashwin</creatorcontrib><creatorcontrib>Flinck, Hannu</creatorcontrib><creatorcontrib>Tarkoma, Sasu</creatorcontrib><title>On Reconfiguring 5G Network Slices</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>The virtual resources of 5G networks are expected to scale and support migration to other locations within the substrate. In this context, a configuration for 5G network slices details the instantaneous mapping of the virtual resources across all slices on the substrate, and a feasible configuration satisfies the Service-Level Objectives (SLOs) without overloading the substrate. Reconfiguring a network from a given source configuration to the desired target configuration involves identifying an ordered sequence of feasible configurations from the source to the target. The proposed solutions for finding such a sequence are optimized for data centers and cannot be used as-is for reconfiguring 5G network slices. We present Matryoshka , our divide-and-conquer approach for finding a sequence of feasible configurations that can be used to reconfigure 5G network slices. Unlike previous approaches, Matryoshka also considers the bandwidth and latency constraints between the network functions of network slices. Evaluating Matryoshka required a dataset of pairs of source and target configurations. Because such a dataset is currently unavailable, we analyze proof of concept roll-outs, trends in standardization bodies, and research sources to compile an input dataset. On using Matryoshka on our dataset, we observe that it yields close-to-optimal reconfiguration sequences 10X faster than existing approaches.</description><subject>5G mobile communication</subject><subject>Bandwidth</subject><subject>Configurations</subject><subject>Data centers</subject><subject>Datasets</subject><subject>Mapping</subject><subject>Network Function Virtualization (NFV)</subject><subject>Network latency</subject><subject>network reconfiguration</subject><subject>Network slicing</subject><subject>Reconfiguration</subject><subject>Standardization</subject><subject>Substrates</subject><subject>Virtual Machine (VM) migration</subject><subject>Virtual machining</subject><subject>Virtual networks</subject><subject>Wireless networks</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AURQdRsFZ_gLgJuk58bz6SmWUpWpViwXY_JJOXklqTOpMg_nsTWlzdzbn3wmHsFiFBBPP4tp7NEw4cEm50qo0-YxNUSscAoM_ZBDIhYp1hesmuQtgBoJSaT9j9qok-yLVNVW97XzfbSC2id-p-Wv8Zrfe1o3DNLqp8H-jmlFO2eX7azF_i5WrxOp8tYydE2sWSVwJISU6VzIuSnM4yUlxQUSoFlXKgMydzqVODuTM5GO5cWpaFkMKUXEzZw3H24NvvnkJnd23vm-HRcolaohEcBwqPlPNtCJ4qe_D1V-5_LYIdTdjRhB1N2JOJoXN37NRE9M8bSLnMUPwBdMNX1w</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Pozza, Matteo</creator><creator>Nicholson, Patrick K.</creator><creator>Lugones, Diego F.</creator><creator>Rao, Ashwin</creator><creator>Flinck, Hannu</creator><creator>Tarkoma, Sasu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5280-3428</orcidid><orcidid>https://orcid.org/0000-0001-9619-6682</orcidid><orcidid>https://orcid.org/0000-0002-9688-7093</orcidid><orcidid>https://orcid.org/0000-0001-9792-2199</orcidid><orcidid>https://orcid.org/0000-0001-5867-5973</orcidid><orcidid>https://orcid.org/0000-0003-4220-3650</orcidid></search><sort><creationdate>20200701</creationdate><title>On Reconfiguring 5G Network Slices</title><author>Pozza, Matteo ; Nicholson, Patrick K. ; Lugones, Diego F. ; Rao, Ashwin ; Flinck, Hannu ; Tarkoma, Sasu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-42f30e542ef4abdec877e523ebd550f5c087c4a48691ac9a092cc6ddb3439d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>5G mobile communication</topic><topic>Bandwidth</topic><topic>Configurations</topic><topic>Data centers</topic><topic>Datasets</topic><topic>Mapping</topic><topic>Network Function Virtualization (NFV)</topic><topic>Network latency</topic><topic>network reconfiguration</topic><topic>Network slicing</topic><topic>Reconfiguration</topic><topic>Standardization</topic><topic>Substrates</topic><topic>Virtual Machine (VM) migration</topic><topic>Virtual machining</topic><topic>Virtual networks</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pozza, Matteo</creatorcontrib><creatorcontrib>Nicholson, Patrick K.</creatorcontrib><creatorcontrib>Lugones, Diego F.</creatorcontrib><creatorcontrib>Rao, Ashwin</creatorcontrib><creatorcontrib>Flinck, Hannu</creatorcontrib><creatorcontrib>Tarkoma, Sasu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pozza, Matteo</au><au>Nicholson, Patrick K.</au><au>Lugones, Diego F.</au><au>Rao, Ashwin</au><au>Flinck, Hannu</au><au>Tarkoma, Sasu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Reconfiguring 5G Network Slices</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>38</volume><issue>7</issue><spage>1542</spage><epage>1554</epage><pages>1542-1554</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>The virtual resources of 5G networks are expected to scale and support migration to other locations within the substrate. In this context, a configuration for 5G network slices details the instantaneous mapping of the virtual resources across all slices on the substrate, and a feasible configuration satisfies the Service-Level Objectives (SLOs) without overloading the substrate. Reconfiguring a network from a given source configuration to the desired target configuration involves identifying an ordered sequence of feasible configurations from the source to the target. The proposed solutions for finding such a sequence are optimized for data centers and cannot be used as-is for reconfiguring 5G network slices. We present Matryoshka , our divide-and-conquer approach for finding a sequence of feasible configurations that can be used to reconfigure 5G network slices. Unlike previous approaches, Matryoshka also considers the bandwidth and latency constraints between the network functions of network slices. Evaluating Matryoshka required a dataset of pairs of source and target configurations. Because such a dataset is currently unavailable, we analyze proof of concept roll-outs, trends in standardization bodies, and research sources to compile an input dataset. On using Matryoshka on our dataset, we observe that it yields close-to-optimal reconfiguration sequences 10X faster than existing approaches.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2020.2986898</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5280-3428</orcidid><orcidid>https://orcid.org/0000-0001-9619-6682</orcidid><orcidid>https://orcid.org/0000-0002-9688-7093</orcidid><orcidid>https://orcid.org/0000-0001-9792-2199</orcidid><orcidid>https://orcid.org/0000-0001-5867-5973</orcidid><orcidid>https://orcid.org/0000-0003-4220-3650</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8716 |
ispartof | IEEE journal on selected areas in communications, 2020-07, Vol.38 (7), p.1542-1554 |
issn | 0733-8716 1558-0008 |
language | eng |
recordid | cdi_proquest_journals_2418419321 |
source | IEEE Electronic Library (IEL) |
subjects | 5G mobile communication Bandwidth Configurations Data centers Datasets Mapping Network Function Virtualization (NFV) Network latency network reconfiguration Network slicing Reconfiguration Standardization Substrates Virtual Machine (VM) migration Virtual machining Virtual networks Wireless networks |
title | On Reconfiguring 5G Network Slices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Reconfiguring%205G%20Network%20Slices&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Pozza,%20Matteo&rft.date=2020-07-01&rft.volume=38&rft.issue=7&rft.spage=1542&rft.epage=1554&rft.pages=1542-1554&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2020.2986898&rft_dat=%3Cproquest_RIE%3E2418419321%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418419321&rft_id=info:pmid/&rft_ieee_id=9062471&rfr_iscdi=true |