Image-Based Model for Assessment of Wood Chip Quality and Mixture Ratios
This article focuses on fuel quality in biomass power plants and describes an online prediction method based on image analysis and regression modeling. The main goal is to determine the mixture fraction from blends of two wood chip species with different qualities and properties. Starting from image...
Gespeichert in:
Veröffentlicht in: | Processes 2020, Vol.8 (6), p.728 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 728 |
container_title | Processes |
container_volume | 8 |
creator | Plankenbühler, Thomas Kolb, Sebastian Grümer, Fabian Müller, Dominik Karl, Jürgen |
description | This article focuses on fuel quality in biomass power plants and describes an online prediction method based on image analysis and regression modeling. The main goal is to determine the mixture fraction from blends of two wood chip species with different qualities and properties. Starting from images of both fuels and different mixtures, we used two different approaches to deduce feature vectors. The first one relied on integral brightness values while the latter used spatial texture information. The features were used as input data for linear and non-linear regression models in nine training classes. This permitted the subsequent prediction of mixture ratios from prior unknown similar images. We extensively discuss the influence of model and image selection, parametrization, the application of boosting algorithms and training strategies. We obtained models featuring predictive accuracies of R2 > 0.9 for the brightness-based model and R2 > 0.8 for the texture based one during the validation tests. Even when reducing the data used for model training down to two or three mixture classes—which could be necessary or beneficial for the industrial application of our approach—sampling rates of n < 5 were sufficient in order to obtain significant predictions. |
doi_str_mv | 10.3390/pr8060728 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2417834036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417834036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-7bc6d5f6bc8393c06a2956b7a9739b5e8e8c94a64d9b4bd9f16e3bc780c075183</originalsourceid><addsrcrecordid>eNpNkEtLw0AAhBdRsNQe_AcLnjxE95Hs41iL2kJFFMVj2KemJNm4uwH7741UxLnMHD5mYAA4x-iKUomuhygQQ5yIIzAjhPBCcsyP_-VTsEhphyZJTEXFZmC96dS7K25UchY-BOta6EOEy5RcSp3rMwwevoVg4eqjGeDTqNom76HqJ7r5ymN08FnlJqQzcOJVm9zi1-fg9e72ZbUuto_3m9VyWxgiSS64NsxWnmkjqKQGMUVkxTRXklOpKyecMLJUrLRSl9pKj5mj2nCBDOIVFnQOLg69Qwyfo0u53oUx9tNkTUrMBS0RZRN1eaBMDClF5-shNp2K-xqj-uer-u8r-g0J61pE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417834036</pqid></control><display><type>article</type><title>Image-Based Model for Assessment of Wood Chip Quality and Mixture Ratios</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Plankenbühler, Thomas ; Kolb, Sebastian ; Grümer, Fabian ; Müller, Dominik ; Karl, Jürgen</creator><creatorcontrib>Plankenbühler, Thomas ; Kolb, Sebastian ; Grümer, Fabian ; Müller, Dominik ; Karl, Jürgen</creatorcontrib><description>This article focuses on fuel quality in biomass power plants and describes an online prediction method based on image analysis and regression modeling. The main goal is to determine the mixture fraction from blends of two wood chip species with different qualities and properties. Starting from images of both fuels and different mixtures, we used two different approaches to deduce feature vectors. The first one relied on integral brightness values while the latter used spatial texture information. The features were used as input data for linear and non-linear regression models in nine training classes. This permitted the subsequent prediction of mixture ratios from prior unknown similar images. We extensively discuss the influence of model and image selection, parametrization, the application of boosting algorithms and training strategies. We obtained models featuring predictive accuracies of R2 > 0.9 for the brightness-based model and R2 > 0.8 for the texture based one during the validation tests. Even when reducing the data used for model training down to two or three mixture classes—which could be necessary or beneficial for the industrial application of our approach—sampling rates of n < 5 were sufficient in order to obtain significant predictions.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr8060728</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Biomass energy ; Brightness ; Electric power generation ; Furnaces ; Image analysis ; Image processing ; Industrial applications ; Machine learning ; Model accuracy ; Neural networks ; Parameterization ; Power plants ; Predictions ; Process controls ; Quality ; Ratios ; Raw materials ; Regression analysis ; Regression models ; Texture ; Training</subject><ispartof>Processes, 2020, Vol.8 (6), p.728</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-7bc6d5f6bc8393c06a2956b7a9739b5e8e8c94a64d9b4bd9f16e3bc780c075183</citedby><cites>FETCH-LOGICAL-c292t-7bc6d5f6bc8393c06a2956b7a9739b5e8e8c94a64d9b4bd9f16e3bc780c075183</cites><orcidid>0000-0002-7322-051X ; 0000-0002-7000-7764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Plankenbühler, Thomas</creatorcontrib><creatorcontrib>Kolb, Sebastian</creatorcontrib><creatorcontrib>Grümer, Fabian</creatorcontrib><creatorcontrib>Müller, Dominik</creatorcontrib><creatorcontrib>Karl, Jürgen</creatorcontrib><title>Image-Based Model for Assessment of Wood Chip Quality and Mixture Ratios</title><title>Processes</title><description>This article focuses on fuel quality in biomass power plants and describes an online prediction method based on image analysis and regression modeling. The main goal is to determine the mixture fraction from blends of two wood chip species with different qualities and properties. Starting from images of both fuels and different mixtures, we used two different approaches to deduce feature vectors. The first one relied on integral brightness values while the latter used spatial texture information. The features were used as input data for linear and non-linear regression models in nine training classes. This permitted the subsequent prediction of mixture ratios from prior unknown similar images. We extensively discuss the influence of model and image selection, parametrization, the application of boosting algorithms and training strategies. We obtained models featuring predictive accuracies of R2 > 0.9 for the brightness-based model and R2 > 0.8 for the texture based one during the validation tests. Even when reducing the data used for model training down to two or three mixture classes—which could be necessary or beneficial for the industrial application of our approach—sampling rates of n < 5 were sufficient in order to obtain significant predictions.</description><subject>Algorithms</subject><subject>Biomass energy</subject><subject>Brightness</subject><subject>Electric power generation</subject><subject>Furnaces</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Industrial applications</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Parameterization</subject><subject>Power plants</subject><subject>Predictions</subject><subject>Process controls</subject><subject>Quality</subject><subject>Ratios</subject><subject>Raw materials</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Texture</subject><subject>Training</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkEtLw0AAhBdRsNQe_AcLnjxE95Hs41iL2kJFFMVj2KemJNm4uwH7741UxLnMHD5mYAA4x-iKUomuhygQQ5yIIzAjhPBCcsyP_-VTsEhphyZJTEXFZmC96dS7K25UchY-BOta6EOEy5RcSp3rMwwevoVg4eqjGeDTqNom76HqJ7r5ymN08FnlJqQzcOJVm9zi1-fg9e72ZbUuto_3m9VyWxgiSS64NsxWnmkjqKQGMUVkxTRXklOpKyecMLJUrLRSl9pKj5mj2nCBDOIVFnQOLg69Qwyfo0u53oUx9tNkTUrMBS0RZRN1eaBMDClF5-shNp2K-xqj-uer-u8r-g0J61pE</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Plankenbühler, Thomas</creator><creator>Kolb, Sebastian</creator><creator>Grümer, Fabian</creator><creator>Müller, Dominik</creator><creator>Karl, Jürgen</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7322-051X</orcidid><orcidid>https://orcid.org/0000-0002-7000-7764</orcidid></search><sort><creationdate>2020</creationdate><title>Image-Based Model for Assessment of Wood Chip Quality and Mixture Ratios</title><author>Plankenbühler, Thomas ; Kolb, Sebastian ; Grümer, Fabian ; Müller, Dominik ; Karl, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-7bc6d5f6bc8393c06a2956b7a9739b5e8e8c94a64d9b4bd9f16e3bc780c075183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Biomass energy</topic><topic>Brightness</topic><topic>Electric power generation</topic><topic>Furnaces</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Industrial applications</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Parameterization</topic><topic>Power plants</topic><topic>Predictions</topic><topic>Process controls</topic><topic>Quality</topic><topic>Ratios</topic><topic>Raw materials</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Texture</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plankenbühler, Thomas</creatorcontrib><creatorcontrib>Kolb, Sebastian</creatorcontrib><creatorcontrib>Grümer, Fabian</creatorcontrib><creatorcontrib>Müller, Dominik</creatorcontrib><creatorcontrib>Karl, Jürgen</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plankenbühler, Thomas</au><au>Kolb, Sebastian</au><au>Grümer, Fabian</au><au>Müller, Dominik</au><au>Karl, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image-Based Model for Assessment of Wood Chip Quality and Mixture Ratios</atitle><jtitle>Processes</jtitle><date>2020</date><risdate>2020</risdate><volume>8</volume><issue>6</issue><spage>728</spage><pages>728-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>This article focuses on fuel quality in biomass power plants and describes an online prediction method based on image analysis and regression modeling. The main goal is to determine the mixture fraction from blends of two wood chip species with different qualities and properties. Starting from images of both fuels and different mixtures, we used two different approaches to deduce feature vectors. The first one relied on integral brightness values while the latter used spatial texture information. The features were used as input data for linear and non-linear regression models in nine training classes. This permitted the subsequent prediction of mixture ratios from prior unknown similar images. We extensively discuss the influence of model and image selection, parametrization, the application of boosting algorithms and training strategies. We obtained models featuring predictive accuracies of R2 > 0.9 for the brightness-based model and R2 > 0.8 for the texture based one during the validation tests. Even when reducing the data used for model training down to two or three mixture classes—which could be necessary or beneficial for the industrial application of our approach—sampling rates of n < 5 were sufficient in order to obtain significant predictions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr8060728</doi><orcidid>https://orcid.org/0000-0002-7322-051X</orcidid><orcidid>https://orcid.org/0000-0002-7000-7764</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2020, Vol.8 (6), p.728 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2417834036 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Biomass energy Brightness Electric power generation Furnaces Image analysis Image processing Industrial applications Machine learning Model accuracy Neural networks Parameterization Power plants Predictions Process controls Quality Ratios Raw materials Regression analysis Regression models Texture Training |
title | Image-Based Model for Assessment of Wood Chip Quality and Mixture Ratios |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image-Based%20Model%20for%20Assessment%20of%20Wood%20Chip%20Quality%20and%20Mixture%20Ratios&rft.jtitle=Processes&rft.au=Plankenb%C3%BChler,%20Thomas&rft.date=2020&rft.volume=8&rft.issue=6&rft.spage=728&rft.pages=728-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr8060728&rft_dat=%3Cproquest_cross%3E2417834036%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417834036&rft_id=info:pmid/&rfr_iscdi=true |