Probabilistic Analysis of the Reliability and Fatigue Life of Machine Parts by Fatigue Failure

The problem of calculating the reliability and fatigue life of machine parts by the fatigue failure under random changes in the actual and limit stresses is considered. According to the corrected theory of the linear summation of damage, a transcendental equation has been obtained that relates the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of machinery manufacture and reliability 2020-05, Vol.49 (3), p.263-271
Hauptverfasser: Bakirov, Zh. B., Tanirbergenova, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 271
container_issue 3
container_start_page 263
container_title Journal of machinery manufacture and reliability
container_volume 49
creator Bakirov, Zh. B.
Tanirbergenova, A. A.
description The problem of calculating the reliability and fatigue life of machine parts by the fatigue failure under random changes in the actual and limit stresses is considered. According to the corrected theory of the linear summation of damage, a transcendental equation has been obtained that relates the number of cycles until failure to the random loading parameters and the ultimate strength. From this equation, the ultimate strength threshold is determined, which corresponds to the destructive number of cycles over the service lifetime. The fatigue reliability equals the probability of exceedance of this value by the ultimate strength. Analytical dependences have been obtained for determination of the probabilistic characteristics of the fatigue life under a simultaneous random change in the normal and tangential stresses.
doi_str_mv 10.3103/S1052618820030036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2417799999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417799999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-4efbe2f2018447aff4afa22636eb9ea82261e66927bf9e53a928f6790f7e92093</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLcFz9H9SDbZYylWhYrFj6thEmfbLTGpu5tD_r0bK3oQh4EZeJ_3hRlCzjm7lJzJqyfOMqF4UQjGZGx1QCZcyzTRUqeHcY9yMurH5MT7LWNZpqWakNeV6yqobGN9sDWdtdAM3nraGRo2SB-xsV9qGCi0b3QBwa57pEtrcGTuod7YFukKXPC0Gn6ABdimd3hKjgw0Hs--55S8LK6f57fJ8uHmbj5bJrVQRUhSNBUKIxgv0jQHY1IwIISSCiuNUMSVo1Ja5JXRmEnQojAq18zkqAXTckou9rk713306EO57XoXj_GlSHme67EixfdU7TrvHZpy5-w7uKHkrBzfWP55Y_SIvcdHtl2j-03-3_QJNPJzQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417799999</pqid></control><display><type>article</type><title>Probabilistic Analysis of the Reliability and Fatigue Life of Machine Parts by Fatigue Failure</title><source>SpringerLink Journals</source><creator>Bakirov, Zh. B. ; Tanirbergenova, A. A.</creator><creatorcontrib>Bakirov, Zh. B. ; Tanirbergenova, A. A.</creatorcontrib><description>The problem of calculating the reliability and fatigue life of machine parts by the fatigue failure under random changes in the actual and limit stresses is considered. According to the corrected theory of the linear summation of damage, a transcendental equation has been obtained that relates the number of cycles until failure to the random loading parameters and the ultimate strength. From this equation, the ultimate strength threshold is determined, which corresponds to the destructive number of cycles over the service lifetime. The fatigue reliability equals the probability of exceedance of this value by the ultimate strength. Analytical dependences have been obtained for determination of the probabilistic characteristics of the fatigue life under a simultaneous random change in the normal and tangential stresses.</description><identifier>ISSN: 1052-6188</identifier><identifier>EISSN: 1934-9394</identifier><identifier>DOI: 10.3103/S1052618820030036</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Component reliability ; Diagnostics ; Engineering ; Experimental Mechanics ; Fatigue failure ; Fatigue life ; Machines ; Manufacturing ; Probabilistic analysis ; Processes ; Reliability analysis ; Service life ; Statistical analysis ; Stresses ; Testing ; Ultimate tensile strength</subject><ispartof>Journal of machinery manufacture and reliability, 2020-05, Vol.49 (3), p.263-271</ispartof><rights>Allerton Press, Inc. 2020</rights><rights>Allerton Press, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-4efbe2f2018447aff4afa22636eb9ea82261e66927bf9e53a928f6790f7e92093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1052618820030036$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1052618820030036$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bakirov, Zh. B.</creatorcontrib><creatorcontrib>Tanirbergenova, A. A.</creatorcontrib><title>Probabilistic Analysis of the Reliability and Fatigue Life of Machine Parts by Fatigue Failure</title><title>Journal of machinery manufacture and reliability</title><addtitle>J. Mach. Manuf. Reliab</addtitle><description>The problem of calculating the reliability and fatigue life of machine parts by the fatigue failure under random changes in the actual and limit stresses is considered. According to the corrected theory of the linear summation of damage, a transcendental equation has been obtained that relates the number of cycles until failure to the random loading parameters and the ultimate strength. From this equation, the ultimate strength threshold is determined, which corresponds to the destructive number of cycles over the service lifetime. The fatigue reliability equals the probability of exceedance of this value by the ultimate strength. Analytical dependences have been obtained for determination of the probabilistic characteristics of the fatigue life under a simultaneous random change in the normal and tangential stresses.</description><subject>Component reliability</subject><subject>Diagnostics</subject><subject>Engineering</subject><subject>Experimental Mechanics</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Probabilistic analysis</subject><subject>Processes</subject><subject>Reliability analysis</subject><subject>Service life</subject><subject>Statistical analysis</subject><subject>Stresses</subject><subject>Testing</subject><subject>Ultimate tensile strength</subject><issn>1052-6188</issn><issn>1934-9394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFZ_gLcFz9H9SDbZYylWhYrFj6thEmfbLTGpu5tD_r0bK3oQh4EZeJ_3hRlCzjm7lJzJqyfOMqF4UQjGZGx1QCZcyzTRUqeHcY9yMurH5MT7LWNZpqWakNeV6yqobGN9sDWdtdAM3nraGRo2SB-xsV9qGCi0b3QBwa57pEtrcGTuod7YFukKXPC0Gn6ABdimd3hKjgw0Hs--55S8LK6f57fJ8uHmbj5bJrVQRUhSNBUKIxgv0jQHY1IwIISSCiuNUMSVo1Ja5JXRmEnQojAq18zkqAXTckou9rk713306EO57XoXj_GlSHme67EixfdU7TrvHZpy5-w7uKHkrBzfWP55Y_SIvcdHtl2j-03-3_QJNPJzQg</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Bakirov, Zh. B.</creator><creator>Tanirbergenova, A. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200501</creationdate><title>Probabilistic Analysis of the Reliability and Fatigue Life of Machine Parts by Fatigue Failure</title><author>Bakirov, Zh. B. ; Tanirbergenova, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-4efbe2f2018447aff4afa22636eb9ea82261e66927bf9e53a928f6790f7e92093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Component reliability</topic><topic>Diagnostics</topic><topic>Engineering</topic><topic>Experimental Mechanics</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Probabilistic analysis</topic><topic>Processes</topic><topic>Reliability analysis</topic><topic>Service life</topic><topic>Statistical analysis</topic><topic>Stresses</topic><topic>Testing</topic><topic>Ultimate tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakirov, Zh. B.</creatorcontrib><creatorcontrib>Tanirbergenova, A. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of machinery manufacture and reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakirov, Zh. B.</au><au>Tanirbergenova, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Analysis of the Reliability and Fatigue Life of Machine Parts by Fatigue Failure</atitle><jtitle>Journal of machinery manufacture and reliability</jtitle><stitle>J. Mach. Manuf. Reliab</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>49</volume><issue>3</issue><spage>263</spage><epage>271</epage><pages>263-271</pages><issn>1052-6188</issn><eissn>1934-9394</eissn><abstract>The problem of calculating the reliability and fatigue life of machine parts by the fatigue failure under random changes in the actual and limit stresses is considered. According to the corrected theory of the linear summation of damage, a transcendental equation has been obtained that relates the number of cycles until failure to the random loading parameters and the ultimate strength. From this equation, the ultimate strength threshold is determined, which corresponds to the destructive number of cycles over the service lifetime. The fatigue reliability equals the probability of exceedance of this value by the ultimate strength. Analytical dependences have been obtained for determination of the probabilistic characteristics of the fatigue life under a simultaneous random change in the normal and tangential stresses.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1052618820030036</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1052-6188
ispartof Journal of machinery manufacture and reliability, 2020-05, Vol.49 (3), p.263-271
issn 1052-6188
1934-9394
language eng
recordid cdi_proquest_journals_2417799999
source SpringerLink Journals
subjects Component reliability
Diagnostics
Engineering
Experimental Mechanics
Fatigue failure
Fatigue life
Machines
Manufacturing
Probabilistic analysis
Processes
Reliability analysis
Service life
Statistical analysis
Stresses
Testing
Ultimate tensile strength
title Probabilistic Analysis of the Reliability and Fatigue Life of Machine Parts by Fatigue Failure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A29%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Analysis%20of%20the%20Reliability%20and%20Fatigue%20Life%20of%20Machine%20Parts%20by%20Fatigue%20Failure&rft.jtitle=Journal%20of%20machinery%20manufacture%20and%20reliability&rft.au=Bakirov,%20Zh.%20B.&rft.date=2020-05-01&rft.volume=49&rft.issue=3&rft.spage=263&rft.epage=271&rft.pages=263-271&rft.issn=1052-6188&rft.eissn=1934-9394&rft_id=info:doi/10.3103/S1052618820030036&rft_dat=%3Cproquest_cross%3E2417799999%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417799999&rft_id=info:pmid/&rfr_iscdi=true