Classification of Well Log Data Using Vanishing Component Analysis

This study reports the application of the novel supervised learning approach called vanishing component analysis (VCA) for the classification of lithologies from well log signal data. Geophysical well log data is always non-linear due to anisotropy and heterogeneity of the earth. The main purpose of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pure and applied geophysics 2020-06, Vol.177 (6), p.2719-2737
Hauptverfasser: Hayat, Umar, Ali, Aamir, Murtaza, Ghulam, Ullah, Matee, Ullah, Ikram, Nolla de Celis, Álvaro, Rajpoot, Nasir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2737
container_issue 6
container_start_page 2719
container_title Pure and applied geophysics
container_volume 177
creator Hayat, Umar
Ali, Aamir
Murtaza, Ghulam
Ullah, Matee
Ullah, Ikram
Nolla de Celis, Álvaro
Rajpoot, Nasir
description This study reports the application of the novel supervised learning approach called vanishing component analysis (VCA) for the classification of lithologies from well log signal data. Geophysical well log data is always non-linear due to anisotropy and heterogeneity of the earth. The main purpose of this study is to test the applicability of the VCA algorithm on non-linear geophysical data of Siraj South-01, Middle Indus Basin, Pakistan for classification of lithologies/facies. We demonstrate the performance and stability of the novel approach on a case study before applying it on well log data. Our analysis demonstrates that VCA algorithm is able to linearly separate such a complex non-linear well log data and clearly distinguish between different classes of well log data coming from different rock units. Furthermore, we show that the average accuracies of the classification methods of linear support vector machines, eXtreme gradient boosting, random forest, neural network and linear discriminant analysis on the VCA feature space are much better than the average accuracy obtained by the same methods on the original data.
doi_str_mv 10.1007/s00024-019-02374-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2417701782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417701782</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-f9b3d8346f313584a1e79b36bcd8094927178401308de3775cbafb8f156361c33</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwicTasvc7fsQQKSJW4UDhaTmqXVGlcvOmhb49LkLhx2tVqZrTzMXYt4FYA5HcEAFJxECUHibni8oRNhJLAS4HZKZsAIHKVpnjOLog2ACLP03LC7qvOELWubczQ-j7xLvmwXZcs_Dp5MINJltT26-Td9C19HrfKb3e-t_2QzHrTHailS3bmTEf26ndO2XL--FY988Xr00s1W3CDSg7clTWuClSZQ4FpoYyweTxldbMqoFSlzEVeKBAIxcpi_K6pjasLJ9IMM9EgTtnNmLsL_mtvadAbvw_xCdJSxTqxUiGjSo6qJniiYJ3ehXZrwkEL0EdWemSlIyv9w0ofTTiaKIr7tQ1_0f-4vgF_WGon</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417701782</pqid></control><display><type>article</type><title>Classification of Well Log Data Using Vanishing Component Analysis</title><source>SpringerLink Journals</source><creator>Hayat, Umar ; Ali, Aamir ; Murtaza, Ghulam ; Ullah, Matee ; Ullah, Ikram ; Nolla de Celis, Álvaro ; Rajpoot, Nasir</creator><creatorcontrib>Hayat, Umar ; Ali, Aamir ; Murtaza, Ghulam ; Ullah, Matee ; Ullah, Ikram ; Nolla de Celis, Álvaro ; Rajpoot, Nasir</creatorcontrib><description>This study reports the application of the novel supervised learning approach called vanishing component analysis (VCA) for the classification of lithologies from well log signal data. Geophysical well log data is always non-linear due to anisotropy and heterogeneity of the earth. The main purpose of this study is to test the applicability of the VCA algorithm on non-linear geophysical data of Siraj South-01, Middle Indus Basin, Pakistan for classification of lithologies/facies. We demonstrate the performance and stability of the novel approach on a case study before applying it on well log data. Our analysis demonstrates that VCA algorithm is able to linearly separate such a complex non-linear well log data and clearly distinguish between different classes of well log data coming from different rock units. Furthermore, we show that the average accuracies of the classification methods of linear support vector machines, eXtreme gradient boosting, random forest, neural network and linear discriminant analysis on the VCA feature space are much better than the average accuracy obtained by the same methods on the original data.</description><identifier>ISSN: 0033-4553</identifier><identifier>EISSN: 1420-9136</identifier><identifier>DOI: 10.1007/s00024-019-02374-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Analysis ; Anisotropy ; Classification ; Data analysis ; Discriminant analysis ; Earth and Environmental Science ; Earth Sciences ; Geophysical data ; Geophysics ; Geophysics/Geodesy ; Heterogeneity ; Methods ; Neural networks ; Stability ; Support vector machines</subject><ispartof>Pure and applied geophysics, 2020-06, Vol.177 (6), p.2719-2737</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Springer Nature Switzerland AG 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-f9b3d8346f313584a1e79b36bcd8094927178401308de3775cbafb8f156361c33</citedby><cites>FETCH-LOGICAL-a342t-f9b3d8346f313584a1e79b36bcd8094927178401308de3775cbafb8f156361c33</cites><orcidid>0000-0002-1299-2284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00024-019-02374-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00024-019-02374-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hayat, Umar</creatorcontrib><creatorcontrib>Ali, Aamir</creatorcontrib><creatorcontrib>Murtaza, Ghulam</creatorcontrib><creatorcontrib>Ullah, Matee</creatorcontrib><creatorcontrib>Ullah, Ikram</creatorcontrib><creatorcontrib>Nolla de Celis, Álvaro</creatorcontrib><creatorcontrib>Rajpoot, Nasir</creatorcontrib><title>Classification of Well Log Data Using Vanishing Component Analysis</title><title>Pure and applied geophysics</title><addtitle>Pure Appl. Geophys</addtitle><description>This study reports the application of the novel supervised learning approach called vanishing component analysis (VCA) for the classification of lithologies from well log signal data. Geophysical well log data is always non-linear due to anisotropy and heterogeneity of the earth. The main purpose of this study is to test the applicability of the VCA algorithm on non-linear geophysical data of Siraj South-01, Middle Indus Basin, Pakistan for classification of lithologies/facies. We demonstrate the performance and stability of the novel approach on a case study before applying it on well log data. Our analysis demonstrates that VCA algorithm is able to linearly separate such a complex non-linear well log data and clearly distinguish between different classes of well log data coming from different rock units. Furthermore, we show that the average accuracies of the classification methods of linear support vector machines, eXtreme gradient boosting, random forest, neural network and linear discriminant analysis on the VCA feature space are much better than the average accuracy obtained by the same methods on the original data.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Anisotropy</subject><subject>Classification</subject><subject>Data analysis</subject><subject>Discriminant analysis</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysical data</subject><subject>Geophysics</subject><subject>Geophysics/Geodesy</subject><subject>Heterogeneity</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Stability</subject><subject>Support vector machines</subject><issn>0033-4553</issn><issn>1420-9136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1OwzAQhC0EEqXwApwicTasvc7fsQQKSJW4UDhaTmqXVGlcvOmhb49LkLhx2tVqZrTzMXYt4FYA5HcEAFJxECUHibni8oRNhJLAS4HZKZsAIHKVpnjOLog2ACLP03LC7qvOELWubczQ-j7xLvmwXZcs_Dp5MINJltT26-Td9C19HrfKb3e-t_2QzHrTHailS3bmTEf26ndO2XL--FY988Xr00s1W3CDSg7clTWuClSZQ4FpoYyweTxldbMqoFSlzEVeKBAIxcpi_K6pjasLJ9IMM9EgTtnNmLsL_mtvadAbvw_xCdJSxTqxUiGjSo6qJniiYJ3ehXZrwkEL0EdWemSlIyv9w0ofTTiaKIr7tQ1_0f-4vgF_WGon</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Hayat, Umar</creator><creator>Ali, Aamir</creator><creator>Murtaza, Ghulam</creator><creator>Ullah, Matee</creator><creator>Ullah, Ikram</creator><creator>Nolla de Celis, Álvaro</creator><creator>Rajpoot, Nasir</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1299-2284</orcidid></search><sort><creationdate>20200601</creationdate><title>Classification of Well Log Data Using Vanishing Component Analysis</title><author>Hayat, Umar ; Ali, Aamir ; Murtaza, Ghulam ; Ullah, Matee ; Ullah, Ikram ; Nolla de Celis, Álvaro ; Rajpoot, Nasir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-f9b3d8346f313584a1e79b36bcd8094927178401308de3775cbafb8f156361c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Anisotropy</topic><topic>Classification</topic><topic>Data analysis</topic><topic>Discriminant analysis</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysical data</topic><topic>Geophysics</topic><topic>Geophysics/Geodesy</topic><topic>Heterogeneity</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Stability</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayat, Umar</creatorcontrib><creatorcontrib>Ali, Aamir</creatorcontrib><creatorcontrib>Murtaza, Ghulam</creatorcontrib><creatorcontrib>Ullah, Matee</creatorcontrib><creatorcontrib>Ullah, Ikram</creatorcontrib><creatorcontrib>Nolla de Celis, Álvaro</creatorcontrib><creatorcontrib>Rajpoot, Nasir</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Pure and applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayat, Umar</au><au>Ali, Aamir</au><au>Murtaza, Ghulam</au><au>Ullah, Matee</au><au>Ullah, Ikram</au><au>Nolla de Celis, Álvaro</au><au>Rajpoot, Nasir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Well Log Data Using Vanishing Component Analysis</atitle><jtitle>Pure and applied geophysics</jtitle><stitle>Pure Appl. Geophys</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>177</volume><issue>6</issue><spage>2719</spage><epage>2737</epage><pages>2719-2737</pages><issn>0033-4553</issn><eissn>1420-9136</eissn><abstract>This study reports the application of the novel supervised learning approach called vanishing component analysis (VCA) for the classification of lithologies from well log signal data. Geophysical well log data is always non-linear due to anisotropy and heterogeneity of the earth. The main purpose of this study is to test the applicability of the VCA algorithm on non-linear geophysical data of Siraj South-01, Middle Indus Basin, Pakistan for classification of lithologies/facies. We demonstrate the performance and stability of the novel approach on a case study before applying it on well log data. Our analysis demonstrates that VCA algorithm is able to linearly separate such a complex non-linear well log data and clearly distinguish between different classes of well log data coming from different rock units. Furthermore, we show that the average accuracies of the classification methods of linear support vector machines, eXtreme gradient boosting, random forest, neural network and linear discriminant analysis on the VCA feature space are much better than the average accuracy obtained by the same methods on the original data.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00024-019-02374-2</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1299-2284</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0033-4553
ispartof Pure and applied geophysics, 2020-06, Vol.177 (6), p.2719-2737
issn 0033-4553
1420-9136
language eng
recordid cdi_proquest_journals_2417701782
source SpringerLink Journals
subjects Algorithms
Analysis
Anisotropy
Classification
Data analysis
Discriminant analysis
Earth and Environmental Science
Earth Sciences
Geophysical data
Geophysics
Geophysics/Geodesy
Heterogeneity
Methods
Neural networks
Stability
Support vector machines
title Classification of Well Log Data Using Vanishing Component Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Well%20Log%20Data%20Using%20Vanishing%20Component%20Analysis&rft.jtitle=Pure%20and%20applied%20geophysics&rft.au=Hayat,%20Umar&rft.date=2020-06-01&rft.volume=177&rft.issue=6&rft.spage=2719&rft.epage=2737&rft.pages=2719-2737&rft.issn=0033-4553&rft.eissn=1420-9136&rft_id=info:doi/10.1007/s00024-019-02374-2&rft_dat=%3Cproquest_cross%3E2417701782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417701782&rft_id=info:pmid/&rfr_iscdi=true