Crustal Deformation in Southern California Constrained by Radial Anisotropy From Ambient Noise Adjoint Tomography
We build a new radially anisotropic shear wave velocity model of Southern California based on ambient noise adjoint tomography to investigate crustal deformation associated with Cenozoic evolution of the Pacific‐North American plate boundary. Pervasive positive radial anisotropy (4%) is observed in...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2020-06, Vol.47 (12), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Geophysical research letters |
container_volume | 47 |
creator | Wang, Kai Jiang, Chengxin Yang, Yingjie Schulte‐Pelkum, Vera Liu, Qinya |
description | We build a new radially anisotropic shear wave velocity model of Southern California based on ambient noise adjoint tomography to investigate crustal deformation associated with Cenozoic evolution of the Pacific‐North American plate boundary. Pervasive positive radial anisotropy (4%) is observed in the crust east of the San Andreas Fault (SAF), attributed to subhorizontal alignment of mica/amphibole foliation planes resulting from significant crustal extension. Substantial negative anisotropy (6%) is revealed in the middle/lower crust west of the SAF, where high shear wave speeds are also observed. The negative anisotropy could result from steeply dipping amphibole schists in a shear zone developed during Laramide flat slab subduction. Alternatively, it could be caused by the crystal preferred orientation (CPO) of plagioclase, whose fast axis aligns orthogonally to a presumed subhorizontal foliation. The latter new mechanism highlights potentially complex CPO patterns resulting from different lithospheric mineralogy, as suggested by laboratory experiments on xenoliths from the region.
Plain Language Summary
The crust of Southern California has been shaped by complex tectonic processes through the evolution of the Pacific‐North America plate boundary. The mechanisms of crustal deformation in this area are not fully understood. We investigate the deformation regime by studying the seismic radial anisotropy of shear wave speed associated with mineral or structural orientations. Our work reveals pervasive positive radial anisotropy (VSH > VSV) in the crust and uppermost mantle, which is consistent with the tectonic setting of widespread and long‐term crustal extension of the western United States through the Cenozoic. Interestingly, we also observe strong negative anisotropy (VSH |
doi_str_mv | 10.1029/2020GL088580 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2417105833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417105833</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4108-ea3859eb23dfc70d2e8b9b09af004a70289f4b85fecb3c21cc011211138d571e3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouP65-QECXq1OknabHkt1V6EorOu5pG3qZmmTbpIi_fZG1oMnTzPD_N578BC6IXBPgGYPFCisS-A84XCCFiSL44gDpKdoAZCFnabLc3Th3B4AGDCyQIfCTs6LHj_KzthBeGU0Vhq_m8nvpNW4EL0KH60ELox23gqlZYvrGW9Eq4Iw18oZb80445U1A86HWknt8atRTuK83RsVrq0ZzKcV426-Qmed6J28_p2X6GP1tC2eo_Jt_VLkZSRiAjySgvEkkzVlbdek0FLJ66yGTHQAsUiB8qyLa550sqlZQ0nTACGUEMJ4m6REskt0e_QdrTlM0vlqbyarQ2RFY5ISSDhjgbo7Uo01zlnZVaNVg7BzRaD6KbX6W2rA6RH_Ur2c_2Wr9aZcwjKkfAPDznju</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417105833</pqid></control><display><type>article</type><title>Crustal Deformation in Southern California Constrained by Radial Anisotropy From Ambient Noise Adjoint Tomography</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Wang, Kai ; Jiang, Chengxin ; Yang, Yingjie ; Schulte‐Pelkum, Vera ; Liu, Qinya</creator><creatorcontrib>Wang, Kai ; Jiang, Chengxin ; Yang, Yingjie ; Schulte‐Pelkum, Vera ; Liu, Qinya</creatorcontrib><description>We build a new radially anisotropic shear wave velocity model of Southern California based on ambient noise adjoint tomography to investigate crustal deformation associated with Cenozoic evolution of the Pacific‐North American plate boundary. Pervasive positive radial anisotropy (4%) is observed in the crust east of the San Andreas Fault (SAF), attributed to subhorizontal alignment of mica/amphibole foliation planes resulting from significant crustal extension. Substantial negative anisotropy (6%) is revealed in the middle/lower crust west of the SAF, where high shear wave speeds are also observed. The negative anisotropy could result from steeply dipping amphibole schists in a shear zone developed during Laramide flat slab subduction. Alternatively, it could be caused by the crystal preferred orientation (CPO) of plagioclase, whose fast axis aligns orthogonally to a presumed subhorizontal foliation. The latter new mechanism highlights potentially complex CPO patterns resulting from different lithospheric mineralogy, as suggested by laboratory experiments on xenoliths from the region.
Plain Language Summary
The crust of Southern California has been shaped by complex tectonic processes through the evolution of the Pacific‐North America plate boundary. The mechanisms of crustal deformation in this area are not fully understood. We investigate the deformation regime by studying the seismic radial anisotropy of shear wave speed associated with mineral or structural orientations. Our work reveals pervasive positive radial anisotropy (VSH > VSV) in the crust and uppermost mantle, which is consistent with the tectonic setting of widespread and long‐term crustal extension of the western United States through the Cenozoic. Interestingly, we also observe strong negative anisotropy (VSH < VSV) in the lower crust west of the San Andreas Fault that has not been reported before. We interpret the positive anisotropy to be caused by the subhorizontal alignment of foliation planes of mica/amphibole whereas the negative one is potentially created by either steeply dipping amphibole schists or subhorizontal alignment of plagioclase. The distinct radial anisotropies across the transform plate boundary might indicate the importance of complex CPO patterns, resulting from different lithospheric mineralogy under the same strain regime.
Key Points
A radially anisotropic shear wave velocity model of Southern California is constructed from ambient noise adjoint tomography
Positive radial anisotropy in the crust is caused by subhorizontal alignment of mica and amphibole associated with extensional tectonics
Negative anisotropy west of the San Andreas Fault is attributed to steeply dipping amphibole schists or subhorizontally foliated plagioclase</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2020GL088580</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>adjoint tomography ; Alignment ; Ambient noise ; Anisotropy ; Cenozoic ; Crustal deformation ; Crystal structure ; Deformation ; Dipping ; Evolution ; full waveform inversion ; Laboratory experiments ; Magma ; Mica ; Mineralogy ; Plagioclase ; Plate boundaries ; Plates ; Plates (tectonics) ; Preferred orientation ; S waves ; Schists ; seismic anisotropy ; seismic interferometry ; Seismic velocities ; Shear wave velocities ; Shear zone ; Southern California ; Subduction ; Subduction (geology) ; surface waves ; Tectonic processes ; Tectonics ; Tomography ; Transform plate boundaries ; Wave velocity</subject><ispartof>Geophysical research letters, 2020-06, Vol.47 (12), p.n/a</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4108-ea3859eb23dfc70d2e8b9b09af004a70289f4b85fecb3c21cc011211138d571e3</citedby><cites>FETCH-LOGICAL-a4108-ea3859eb23dfc70d2e8b9b09af004a70289f4b85fecb3c21cc011211138d571e3</cites><orcidid>0000-0002-8768-2782 ; 0000-0002-6057-5637 ; 0000-0002-1105-3824 ; 0000-0002-6189-7056 ; 0000-0002-1071-2314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020GL088580$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020GL088580$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Jiang, Chengxin</creatorcontrib><creatorcontrib>Yang, Yingjie</creatorcontrib><creatorcontrib>Schulte‐Pelkum, Vera</creatorcontrib><creatorcontrib>Liu, Qinya</creatorcontrib><title>Crustal Deformation in Southern California Constrained by Radial Anisotropy From Ambient Noise Adjoint Tomography</title><title>Geophysical research letters</title><description>We build a new radially anisotropic shear wave velocity model of Southern California based on ambient noise adjoint tomography to investigate crustal deformation associated with Cenozoic evolution of the Pacific‐North American plate boundary. Pervasive positive radial anisotropy (4%) is observed in the crust east of the San Andreas Fault (SAF), attributed to subhorizontal alignment of mica/amphibole foliation planes resulting from significant crustal extension. Substantial negative anisotropy (6%) is revealed in the middle/lower crust west of the SAF, where high shear wave speeds are also observed. The negative anisotropy could result from steeply dipping amphibole schists in a shear zone developed during Laramide flat slab subduction. Alternatively, it could be caused by the crystal preferred orientation (CPO) of plagioclase, whose fast axis aligns orthogonally to a presumed subhorizontal foliation. The latter new mechanism highlights potentially complex CPO patterns resulting from different lithospheric mineralogy, as suggested by laboratory experiments on xenoliths from the region.
Plain Language Summary
The crust of Southern California has been shaped by complex tectonic processes through the evolution of the Pacific‐North America plate boundary. The mechanisms of crustal deformation in this area are not fully understood. We investigate the deformation regime by studying the seismic radial anisotropy of shear wave speed associated with mineral or structural orientations. Our work reveals pervasive positive radial anisotropy (VSH > VSV) in the crust and uppermost mantle, which is consistent with the tectonic setting of widespread and long‐term crustal extension of the western United States through the Cenozoic. Interestingly, we also observe strong negative anisotropy (VSH < VSV) in the lower crust west of the San Andreas Fault that has not been reported before. We interpret the positive anisotropy to be caused by the subhorizontal alignment of foliation planes of mica/amphibole whereas the negative one is potentially created by either steeply dipping amphibole schists or subhorizontal alignment of plagioclase. The distinct radial anisotropies across the transform plate boundary might indicate the importance of complex CPO patterns, resulting from different lithospheric mineralogy under the same strain regime.
Key Points
A radially anisotropic shear wave velocity model of Southern California is constructed from ambient noise adjoint tomography
Positive radial anisotropy in the crust is caused by subhorizontal alignment of mica and amphibole associated with extensional tectonics
Negative anisotropy west of the San Andreas Fault is attributed to steeply dipping amphibole schists or subhorizontally foliated plagioclase</description><subject>adjoint tomography</subject><subject>Alignment</subject><subject>Ambient noise</subject><subject>Anisotropy</subject><subject>Cenozoic</subject><subject>Crustal deformation</subject><subject>Crystal structure</subject><subject>Deformation</subject><subject>Dipping</subject><subject>Evolution</subject><subject>full waveform inversion</subject><subject>Laboratory experiments</subject><subject>Magma</subject><subject>Mica</subject><subject>Mineralogy</subject><subject>Plagioclase</subject><subject>Plate boundaries</subject><subject>Plates</subject><subject>Plates (tectonics)</subject><subject>Preferred orientation</subject><subject>S waves</subject><subject>Schists</subject><subject>seismic anisotropy</subject><subject>seismic interferometry</subject><subject>Seismic velocities</subject><subject>Shear wave velocities</subject><subject>Shear zone</subject><subject>Southern California</subject><subject>Subduction</subject><subject>Subduction (geology)</subject><subject>surface waves</subject><subject>Tectonic processes</subject><subject>Tectonics</subject><subject>Tomography</subject><subject>Transform plate boundaries</subject><subject>Wave velocity</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouP65-QECXq1OknabHkt1V6EorOu5pG3qZmmTbpIi_fZG1oMnTzPD_N578BC6IXBPgGYPFCisS-A84XCCFiSL44gDpKdoAZCFnabLc3Th3B4AGDCyQIfCTs6LHj_KzthBeGU0Vhq_m8nvpNW4EL0KH60ELox23gqlZYvrGW9Eq4Iw18oZb80445U1A86HWknt8atRTuK83RsVrq0ZzKcV426-Qmed6J28_p2X6GP1tC2eo_Jt_VLkZSRiAjySgvEkkzVlbdek0FLJ66yGTHQAsUiB8qyLa550sqlZQ0nTACGUEMJ4m6REskt0e_QdrTlM0vlqbyarQ2RFY5ISSDhjgbo7Uo01zlnZVaNVg7BzRaD6KbX6W2rA6RH_Ur2c_2Wr9aZcwjKkfAPDznju</recordid><startdate>20200628</startdate><enddate>20200628</enddate><creator>Wang, Kai</creator><creator>Jiang, Chengxin</creator><creator>Yang, Yingjie</creator><creator>Schulte‐Pelkum, Vera</creator><creator>Liu, Qinya</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8768-2782</orcidid><orcidid>https://orcid.org/0000-0002-6057-5637</orcidid><orcidid>https://orcid.org/0000-0002-1105-3824</orcidid><orcidid>https://orcid.org/0000-0002-6189-7056</orcidid><orcidid>https://orcid.org/0000-0002-1071-2314</orcidid></search><sort><creationdate>20200628</creationdate><title>Crustal Deformation in Southern California Constrained by Radial Anisotropy From Ambient Noise Adjoint Tomography</title><author>Wang, Kai ; Jiang, Chengxin ; Yang, Yingjie ; Schulte‐Pelkum, Vera ; Liu, Qinya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4108-ea3859eb23dfc70d2e8b9b09af004a70289f4b85fecb3c21cc011211138d571e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>adjoint tomography</topic><topic>Alignment</topic><topic>Ambient noise</topic><topic>Anisotropy</topic><topic>Cenozoic</topic><topic>Crustal deformation</topic><topic>Crystal structure</topic><topic>Deformation</topic><topic>Dipping</topic><topic>Evolution</topic><topic>full waveform inversion</topic><topic>Laboratory experiments</topic><topic>Magma</topic><topic>Mica</topic><topic>Mineralogy</topic><topic>Plagioclase</topic><topic>Plate boundaries</topic><topic>Plates</topic><topic>Plates (tectonics)</topic><topic>Preferred orientation</topic><topic>S waves</topic><topic>Schists</topic><topic>seismic anisotropy</topic><topic>seismic interferometry</topic><topic>Seismic velocities</topic><topic>Shear wave velocities</topic><topic>Shear zone</topic><topic>Southern California</topic><topic>Subduction</topic><topic>Subduction (geology)</topic><topic>surface waves</topic><topic>Tectonic processes</topic><topic>Tectonics</topic><topic>Tomography</topic><topic>Transform plate boundaries</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Jiang, Chengxin</creatorcontrib><creatorcontrib>Yang, Yingjie</creatorcontrib><creatorcontrib>Schulte‐Pelkum, Vera</creatorcontrib><creatorcontrib>Liu, Qinya</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kai</au><au>Jiang, Chengxin</au><au>Yang, Yingjie</au><au>Schulte‐Pelkum, Vera</au><au>Liu, Qinya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crustal Deformation in Southern California Constrained by Radial Anisotropy From Ambient Noise Adjoint Tomography</atitle><jtitle>Geophysical research letters</jtitle><date>2020-06-28</date><risdate>2020</risdate><volume>47</volume><issue>12</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>We build a new radially anisotropic shear wave velocity model of Southern California based on ambient noise adjoint tomography to investigate crustal deformation associated with Cenozoic evolution of the Pacific‐North American plate boundary. Pervasive positive radial anisotropy (4%) is observed in the crust east of the San Andreas Fault (SAF), attributed to subhorizontal alignment of mica/amphibole foliation planes resulting from significant crustal extension. Substantial negative anisotropy (6%) is revealed in the middle/lower crust west of the SAF, where high shear wave speeds are also observed. The negative anisotropy could result from steeply dipping amphibole schists in a shear zone developed during Laramide flat slab subduction. Alternatively, it could be caused by the crystal preferred orientation (CPO) of plagioclase, whose fast axis aligns orthogonally to a presumed subhorizontal foliation. The latter new mechanism highlights potentially complex CPO patterns resulting from different lithospheric mineralogy, as suggested by laboratory experiments on xenoliths from the region.
Plain Language Summary
The crust of Southern California has been shaped by complex tectonic processes through the evolution of the Pacific‐North America plate boundary. The mechanisms of crustal deformation in this area are not fully understood. We investigate the deformation regime by studying the seismic radial anisotropy of shear wave speed associated with mineral or structural orientations. Our work reveals pervasive positive radial anisotropy (VSH > VSV) in the crust and uppermost mantle, which is consistent with the tectonic setting of widespread and long‐term crustal extension of the western United States through the Cenozoic. Interestingly, we also observe strong negative anisotropy (VSH < VSV) in the lower crust west of the San Andreas Fault that has not been reported before. We interpret the positive anisotropy to be caused by the subhorizontal alignment of foliation planes of mica/amphibole whereas the negative one is potentially created by either steeply dipping amphibole schists or subhorizontal alignment of plagioclase. The distinct radial anisotropies across the transform plate boundary might indicate the importance of complex CPO patterns, resulting from different lithospheric mineralogy under the same strain regime.
Key Points
A radially anisotropic shear wave velocity model of Southern California is constructed from ambient noise adjoint tomography
Positive radial anisotropy in the crust is caused by subhorizontal alignment of mica and amphibole associated with extensional tectonics
Negative anisotropy west of the San Andreas Fault is attributed to steeply dipping amphibole schists or subhorizontally foliated plagioclase</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2020GL088580</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8768-2782</orcidid><orcidid>https://orcid.org/0000-0002-6057-5637</orcidid><orcidid>https://orcid.org/0000-0002-1105-3824</orcidid><orcidid>https://orcid.org/0000-0002-6189-7056</orcidid><orcidid>https://orcid.org/0000-0002-1071-2314</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2020-06, Vol.47 (12), p.n/a |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_journals_2417105833 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection) |
subjects | adjoint tomography Alignment Ambient noise Anisotropy Cenozoic Crustal deformation Crystal structure Deformation Dipping Evolution full waveform inversion Laboratory experiments Magma Mica Mineralogy Plagioclase Plate boundaries Plates Plates (tectonics) Preferred orientation S waves Schists seismic anisotropy seismic interferometry Seismic velocities Shear wave velocities Shear zone Southern California Subduction Subduction (geology) surface waves Tectonic processes Tectonics Tomography Transform plate boundaries Wave velocity |
title | Crustal Deformation in Southern California Constrained by Radial Anisotropy From Ambient Noise Adjoint Tomography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crustal%20Deformation%20in%20Southern%20California%20Constrained%20by%20Radial%20Anisotropy%20From%20Ambient%20Noise%20Adjoint%20Tomography&rft.jtitle=Geophysical%20research%20letters&rft.au=Wang,%20Kai&rft.date=2020-06-28&rft.volume=47&rft.issue=12&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2020GL088580&rft_dat=%3Cproquest_cross%3E2417105833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417105833&rft_id=info:pmid/&rfr_iscdi=true |