Enhancement of the performance of Pd nanoclusters confined within ultrathin silica layers for formic acid oxidation

The optimized design of highly active and stable anode electrocatalysts is essential for high performance direct formic acid fuel cells (DFAFCs). Herein, a facile and cost-effective strategy was proposed to fabricate a robust ultrasmall Pd nanocluster confined within ultrathin protective silica laye...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2020-06, Vol.12 (24), p.12891-12897
Hauptverfasser: Shan, Jiefei, Zeng, Tang, Wu, Wei, Tan, Yangyang, Cheng, Niancai, Mu, Shichun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12897
container_issue 24
container_start_page 12891
container_title Nanoscale
container_volume 12
creator Shan, Jiefei
Zeng, Tang
Wu, Wei
Tan, Yangyang
Cheng, Niancai
Mu, Shichun
description The optimized design of highly active and stable anode electrocatalysts is essential for high performance direct formic acid fuel cells (DFAFCs). Herein, a facile and cost-effective strategy was proposed to fabricate a robust ultrasmall Pd nanocluster confined within ultrathin protective silica layers anchored on nitrogen doped reduced GO (NrGO) through generating amine functionalized graphene oxide with 3-aminopropyl triethoxysilane (APTES), followed by tuning the thickness of protective silica layers by precisely controlling the amount of tetraethylorthosilicate (TEOS). Amine functionalized graphene oxide generated by using APTES favors the formation of ultrasmall Pd nanoclusters due to the coordination of amine to PdCl 2 4− while the confinement effect of ultrathin protective silica layers stabilizes ultrasmall Pd nanoclusters and impedes the agglomeration and sintering of ultrasmall Pd nanoclusters during electrocatalysis. As a result, the ultrasmall Pd nanoclusters (∼1.4 nm) confined in silica layers on NrGO (Pd/NrGO@SiO 2 ) demonstrate a very high forward peak current density for formic acid oxidation (FAO) of 2.37 A mg −1 , outperforming the Pd/C catalyst (0.30 A mg −1 ) and the Pd/rGO catalyst obtained by a conventional method (0.42 A mg −1 ). More importantly, our confined Pd catalysts show the highest stability of only 5% inconspicuous degradation of the initial mass activity after 1000 cycles, compared with Pd/C (almost 100% loss), Pd/rGO (61.5% loss) and Pd/NrGO (73.2% loss). These strategies in this work provide a new prospect for the design of excellent noble catalysts to overcome the challenges in the practical application of DFAFCs. Ultrasmall Pd nanoclusters confined within silica layers show high activity for formic acid oxidation with excellent stability.
doi_str_mv 10.1039/d0nr00307g
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2416896752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2416896752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-b0d90ae89ffefa86fbaa8e18fc2871a9f1d1513f8255485c89e76ae4dc92e5bc3</originalsourceid><addsrcrecordid>eNp90d1LwzAQAPAiCs7pi-9CxBcRqknTj_RR5pyCqIg-lyy5uIw2qUmK7r-33WSCDz4cd9z9OMIlio4JviSYllcSG4cxxcX7TjRKcIpjSotkd1vn6X504P0S47ykOR1FfmoW3AhowARkFQoLQC04ZV0ztIfWs0SGGyvqzgdwHglrlDYg0acOC21QVwfH15XXtRYc1Xw1uH7HEI0WiAstkf3SkgdtzWG0p3jt4egnj6O32-nr5C5-eJrdT64fYkGLIsRzLEvMgZVKgeIsV3POGRCmRMIKwktFJMkIVSzJspRlgpVQ5BxSKcoEsrmg4-h8s7d19qMDH6pGewF1zQ3YzldJSkhGcZoVPT37Q5e2c6Z_3aByVuZFlvTqYqOEs947UFXrdMPdqiK4Gu5f3eDHl_X9Zz0-2WDnxdb9_k8_P_1vXrVS0W-MzY-m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416896752</pqid></control><display><type>article</type><title>Enhancement of the performance of Pd nanoclusters confined within ultrathin silica layers for formic acid oxidation</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Shan, Jiefei ; Zeng, Tang ; Wu, Wei ; Tan, Yangyang ; Cheng, Niancai ; Mu, Shichun</creator><creatorcontrib>Shan, Jiefei ; Zeng, Tang ; Wu, Wei ; Tan, Yangyang ; Cheng, Niancai ; Mu, Shichun</creatorcontrib><description>The optimized design of highly active and stable anode electrocatalysts is essential for high performance direct formic acid fuel cells (DFAFCs). Herein, a facile and cost-effective strategy was proposed to fabricate a robust ultrasmall Pd nanocluster confined within ultrathin protective silica layers anchored on nitrogen doped reduced GO (NrGO) through generating amine functionalized graphene oxide with 3-aminopropyl triethoxysilane (APTES), followed by tuning the thickness of protective silica layers by precisely controlling the amount of tetraethylorthosilicate (TEOS). Amine functionalized graphene oxide generated by using APTES favors the formation of ultrasmall Pd nanoclusters due to the coordination of amine to PdCl 2 4− while the confinement effect of ultrathin protective silica layers stabilizes ultrasmall Pd nanoclusters and impedes the agglomeration and sintering of ultrasmall Pd nanoclusters during electrocatalysis. As a result, the ultrasmall Pd nanoclusters (∼1.4 nm) confined in silica layers on NrGO (Pd/NrGO@SiO 2 ) demonstrate a very high forward peak current density for formic acid oxidation (FAO) of 2.37 A mg −1 , outperforming the Pd/C catalyst (0.30 A mg −1 ) and the Pd/rGO catalyst obtained by a conventional method (0.42 A mg −1 ). More importantly, our confined Pd catalysts show the highest stability of only 5% inconspicuous degradation of the initial mass activity after 1000 cycles, compared with Pd/C (almost 100% loss), Pd/rGO (61.5% loss) and Pd/NrGO (73.2% loss). These strategies in this work provide a new prospect for the design of excellent noble catalysts to overcome the challenges in the practical application of DFAFCs. Ultrasmall Pd nanoclusters confined within silica layers show high activity for formic acid oxidation with excellent stability.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d0nr00307g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aminopropyltriethoxysilane ; Catalysts ; Design optimization ; Electrocatalysts ; Formic acid ; Fuel cells ; Graphene ; Nanoclusters ; Oxidation ; Silicon dioxide ; Thickness</subject><ispartof>Nanoscale, 2020-06, Vol.12 (24), p.12891-12897</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-b0d90ae89ffefa86fbaa8e18fc2871a9f1d1513f8255485c89e76ae4dc92e5bc3</citedby><cites>FETCH-LOGICAL-c377t-b0d90ae89ffefa86fbaa8e18fc2871a9f1d1513f8255485c89e76ae4dc92e5bc3</cites><orcidid>0000-0003-3902-0976 ; 0000-0002-6358-5515</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Shan, Jiefei</creatorcontrib><creatorcontrib>Zeng, Tang</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Tan, Yangyang</creatorcontrib><creatorcontrib>Cheng, Niancai</creatorcontrib><creatorcontrib>Mu, Shichun</creatorcontrib><title>Enhancement of the performance of Pd nanoclusters confined within ultrathin silica layers for formic acid oxidation</title><title>Nanoscale</title><description>The optimized design of highly active and stable anode electrocatalysts is essential for high performance direct formic acid fuel cells (DFAFCs). Herein, a facile and cost-effective strategy was proposed to fabricate a robust ultrasmall Pd nanocluster confined within ultrathin protective silica layers anchored on nitrogen doped reduced GO (NrGO) through generating amine functionalized graphene oxide with 3-aminopropyl triethoxysilane (APTES), followed by tuning the thickness of protective silica layers by precisely controlling the amount of tetraethylorthosilicate (TEOS). Amine functionalized graphene oxide generated by using APTES favors the formation of ultrasmall Pd nanoclusters due to the coordination of amine to PdCl 2 4− while the confinement effect of ultrathin protective silica layers stabilizes ultrasmall Pd nanoclusters and impedes the agglomeration and sintering of ultrasmall Pd nanoclusters during electrocatalysis. As a result, the ultrasmall Pd nanoclusters (∼1.4 nm) confined in silica layers on NrGO (Pd/NrGO@SiO 2 ) demonstrate a very high forward peak current density for formic acid oxidation (FAO) of 2.37 A mg −1 , outperforming the Pd/C catalyst (0.30 A mg −1 ) and the Pd/rGO catalyst obtained by a conventional method (0.42 A mg −1 ). More importantly, our confined Pd catalysts show the highest stability of only 5% inconspicuous degradation of the initial mass activity after 1000 cycles, compared with Pd/C (almost 100% loss), Pd/rGO (61.5% loss) and Pd/NrGO (73.2% loss). These strategies in this work provide a new prospect for the design of excellent noble catalysts to overcome the challenges in the practical application of DFAFCs. Ultrasmall Pd nanoclusters confined within silica layers show high activity for formic acid oxidation with excellent stability.</description><subject>Aminopropyltriethoxysilane</subject><subject>Catalysts</subject><subject>Design optimization</subject><subject>Electrocatalysts</subject><subject>Formic acid</subject><subject>Fuel cells</subject><subject>Graphene</subject><subject>Nanoclusters</subject><subject>Oxidation</subject><subject>Silicon dioxide</subject><subject>Thickness</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90d1LwzAQAPAiCs7pi-9CxBcRqknTj_RR5pyCqIg-lyy5uIw2qUmK7r-33WSCDz4cd9z9OMIlio4JviSYllcSG4cxxcX7TjRKcIpjSotkd1vn6X504P0S47ykOR1FfmoW3AhowARkFQoLQC04ZV0ztIfWs0SGGyvqzgdwHglrlDYg0acOC21QVwfH15XXtRYc1Xw1uH7HEI0WiAstkf3SkgdtzWG0p3jt4egnj6O32-nr5C5-eJrdT64fYkGLIsRzLEvMgZVKgeIsV3POGRCmRMIKwktFJMkIVSzJspRlgpVQ5BxSKcoEsrmg4-h8s7d19qMDH6pGewF1zQ3YzldJSkhGcZoVPT37Q5e2c6Z_3aByVuZFlvTqYqOEs947UFXrdMPdqiK4Gu5f3eDHl_X9Zz0-2WDnxdb9_k8_P_1vXrVS0W-MzY-m</recordid><startdate>20200625</startdate><enddate>20200625</enddate><creator>Shan, Jiefei</creator><creator>Zeng, Tang</creator><creator>Wu, Wei</creator><creator>Tan, Yangyang</creator><creator>Cheng, Niancai</creator><creator>Mu, Shichun</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3902-0976</orcidid><orcidid>https://orcid.org/0000-0002-6358-5515</orcidid></search><sort><creationdate>20200625</creationdate><title>Enhancement of the performance of Pd nanoclusters confined within ultrathin silica layers for formic acid oxidation</title><author>Shan, Jiefei ; Zeng, Tang ; Wu, Wei ; Tan, Yangyang ; Cheng, Niancai ; Mu, Shichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-b0d90ae89ffefa86fbaa8e18fc2871a9f1d1513f8255485c89e76ae4dc92e5bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aminopropyltriethoxysilane</topic><topic>Catalysts</topic><topic>Design optimization</topic><topic>Electrocatalysts</topic><topic>Formic acid</topic><topic>Fuel cells</topic><topic>Graphene</topic><topic>Nanoclusters</topic><topic>Oxidation</topic><topic>Silicon dioxide</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Jiefei</creatorcontrib><creatorcontrib>Zeng, Tang</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Tan, Yangyang</creatorcontrib><creatorcontrib>Cheng, Niancai</creatorcontrib><creatorcontrib>Mu, Shichun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shan, Jiefei</au><au>Zeng, Tang</au><au>Wu, Wei</au><au>Tan, Yangyang</au><au>Cheng, Niancai</au><au>Mu, Shichun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of the performance of Pd nanoclusters confined within ultrathin silica layers for formic acid oxidation</atitle><jtitle>Nanoscale</jtitle><date>2020-06-25</date><risdate>2020</risdate><volume>12</volume><issue>24</issue><spage>12891</spage><epage>12897</epage><pages>12891-12897</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The optimized design of highly active and stable anode electrocatalysts is essential for high performance direct formic acid fuel cells (DFAFCs). Herein, a facile and cost-effective strategy was proposed to fabricate a robust ultrasmall Pd nanocluster confined within ultrathin protective silica layers anchored on nitrogen doped reduced GO (NrGO) through generating amine functionalized graphene oxide with 3-aminopropyl triethoxysilane (APTES), followed by tuning the thickness of protective silica layers by precisely controlling the amount of tetraethylorthosilicate (TEOS). Amine functionalized graphene oxide generated by using APTES favors the formation of ultrasmall Pd nanoclusters due to the coordination of amine to PdCl 2 4− while the confinement effect of ultrathin protective silica layers stabilizes ultrasmall Pd nanoclusters and impedes the agglomeration and sintering of ultrasmall Pd nanoclusters during electrocatalysis. As a result, the ultrasmall Pd nanoclusters (∼1.4 nm) confined in silica layers on NrGO (Pd/NrGO@SiO 2 ) demonstrate a very high forward peak current density for formic acid oxidation (FAO) of 2.37 A mg −1 , outperforming the Pd/C catalyst (0.30 A mg −1 ) and the Pd/rGO catalyst obtained by a conventional method (0.42 A mg −1 ). More importantly, our confined Pd catalysts show the highest stability of only 5% inconspicuous degradation of the initial mass activity after 1000 cycles, compared with Pd/C (almost 100% loss), Pd/rGO (61.5% loss) and Pd/NrGO (73.2% loss). These strategies in this work provide a new prospect for the design of excellent noble catalysts to overcome the challenges in the practical application of DFAFCs. Ultrasmall Pd nanoclusters confined within silica layers show high activity for formic acid oxidation with excellent stability.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0nr00307g</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3902-0976</orcidid><orcidid>https://orcid.org/0000-0002-6358-5515</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2020-06, Vol.12 (24), p.12891-12897
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_journals_2416896752
source Royal Society Of Chemistry Journals 2008-
subjects Aminopropyltriethoxysilane
Catalysts
Design optimization
Electrocatalysts
Formic acid
Fuel cells
Graphene
Nanoclusters
Oxidation
Silicon dioxide
Thickness
title Enhancement of the performance of Pd nanoclusters confined within ultrathin silica layers for formic acid oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T16%3A27%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20the%20performance%20of%20Pd%20nanoclusters%20confined%20within%20ultrathin%20silica%20layers%20for%20formic%20acid%20oxidation&rft.jtitle=Nanoscale&rft.au=Shan,%20Jiefei&rft.date=2020-06-25&rft.volume=12&rft.issue=24&rft.spage=12891&rft.epage=12897&rft.pages=12891-12897&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d0nr00307g&rft_dat=%3Cproquest_rsc_p%3E2416896752%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416896752&rft_id=info:pmid/&rfr_iscdi=true