Honeycomb-like amorphous VPO4/C spheres with improved sodium storage performance as anode materials for sodium-ion batteries

In this article, honeycomb-like amorphous VPO 4 /C spheres were successfully synthesized via a sol-gel combined hydrothermal route and then tested as anode materials for sodium-ion batteries. After characterized by structure analysis, morphological observation, and composition determination, the pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2020-07, Vol.26 (7), p.3669-3676
Hauptverfasser: Yan, Ji, Zhang, Jian-Hui, Qi, Jia-Jia, Li, Lei, Luo, He-Wei, Cao, Yang, Zhang, Yong, Ding, Yuan-Li, Wang, Li-Zhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3676
container_issue 7
container_start_page 3669
container_title Ionics
container_volume 26
creator Yan, Ji
Zhang, Jian-Hui
Qi, Jia-Jia
Li, Lei
Luo, He-Wei
Cao, Yang
Zhang, Yong
Ding, Yuan-Li
Wang, Li-Zhen
description In this article, honeycomb-like amorphous VPO 4 /C spheres were successfully synthesized via a sol-gel combined hydrothermal route and then tested as anode materials for sodium-ion batteries. After characterized by structure analysis, morphological observation, and composition determination, the prepared VPO 4 /C materials exhibit amorphous structure and spherical morphology with honeycomb-like core framework shielded by compact out-layer shell when compared with its crystalline counterpart. As anode material for sodium storage performance, the amorphous VPO 4 /C delivers a high discharge capacity of 421.1 mAh g −1 at a current density of 100 mA g −1 and exhibits a good cycling stability upon 100 cycles under 500 mA g −1 . The enhancement of electrochemical sodium storage performances can be attributed to the honeycomb-like inner structure facilitating the diffusion of sodium ion and the observable compact out-layer buffering the large volume strains in cycling. Meanwhile, the observed channel-like caves can provide wealthy space for storing richer sodium ion, leading to higher capacity. The proposed viewpoint points out that the synthesis of amorphous architecture is a new strategy to break through the limitation of anode materials for sodium-ion batteries.
doi_str_mv 10.1007/s11581-020-03639-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2416320867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2416320867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3e014984101134e9547ba19aa24369bf5d98c535f7382f1bc0c7d3c1079a30a83</originalsourceid><addsrcrecordid>eNp9kEFLwzAYhoMoOKd_wFPAc9z3NWnTHGWoEwbzoF5D2qZb59rUpHMM_PFmTvDmKYf3fd4vPIRcI9wigJwExDRHBgkw4BlXbHdCRphnCQOZwSkZgRKSSRDynFyEsAbIMkzkiHzNXGf3pWsLtmneLTWt8_3KbQN9e16IyZSGfmW9DXTXDCvatL13n7aiwVXNtqVhcN4sLe2tr51vTVfGhUBN5ypLWzNY35hNoDH7JVjjOlqY4ZDYcEnO6pjbq993TF4f7l-mMzZfPD5N7-as5KgGxi2gULlAQOTCqlTIwqAyJhE8U0WdViovU57WkudJjUUJpax4iSCV4WByPiY3x934-4-tDYNeu63v4kmdCMx4AnkmYys5tkrvQvC21r1vWuP3GkEfLOujZR0t6x_LehchfoRCLHdL6_-m_6G-AdXngXc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416320867</pqid></control><display><type>article</type><title>Honeycomb-like amorphous VPO4/C spheres with improved sodium storage performance as anode materials for sodium-ion batteries</title><source>Springer Nature - Complete Springer Journals</source><creator>Yan, Ji ; Zhang, Jian-Hui ; Qi, Jia-Jia ; Li, Lei ; Luo, He-Wei ; Cao, Yang ; Zhang, Yong ; Ding, Yuan-Li ; Wang, Li-Zhen</creator><creatorcontrib>Yan, Ji ; Zhang, Jian-Hui ; Qi, Jia-Jia ; Li, Lei ; Luo, He-Wei ; Cao, Yang ; Zhang, Yong ; Ding, Yuan-Li ; Wang, Li-Zhen</creatorcontrib><description>In this article, honeycomb-like amorphous VPO 4 /C spheres were successfully synthesized via a sol-gel combined hydrothermal route and then tested as anode materials for sodium-ion batteries. After characterized by structure analysis, morphological observation, and composition determination, the prepared VPO 4 /C materials exhibit amorphous structure and spherical morphology with honeycomb-like core framework shielded by compact out-layer shell when compared with its crystalline counterpart. As anode material for sodium storage performance, the amorphous VPO 4 /C delivers a high discharge capacity of 421.1 mAh g −1 at a current density of 100 mA g −1 and exhibits a good cycling stability upon 100 cycles under 500 mA g −1 . The enhancement of electrochemical sodium storage performances can be attributed to the honeycomb-like inner structure facilitating the diffusion of sodium ion and the observable compact out-layer buffering the large volume strains in cycling. Meanwhile, the observed channel-like caves can provide wealthy space for storing richer sodium ion, leading to higher capacity. The proposed viewpoint points out that the synthesis of amorphous architecture is a new strategy to break through the limitation of anode materials for sodium-ion batteries.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-020-03639-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amorphous materials ; Anodes ; Caves ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Cycles ; Diffusion layers ; Electrochemistry ; Electrode materials ; Energy Storage ; Morphology ; Optical and Electronic Materials ; Rechargeable batteries ; Renewable and Green Energy ; Short Communication ; Sodium ; Sodium diffusion ; Sodium-ion batteries ; Sol-gel processes ; Storage batteries ; Structural analysis</subject><ispartof>Ionics, 2020-07, Vol.26 (7), p.3669-3676</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3e014984101134e9547ba19aa24369bf5d98c535f7382f1bc0c7d3c1079a30a83</citedby><cites>FETCH-LOGICAL-c319t-3e014984101134e9547ba19aa24369bf5d98c535f7382f1bc0c7d3c1079a30a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-020-03639-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-020-03639-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Yan, Ji</creatorcontrib><creatorcontrib>Zhang, Jian-Hui</creatorcontrib><creatorcontrib>Qi, Jia-Jia</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Luo, He-Wei</creatorcontrib><creatorcontrib>Cao, Yang</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Ding, Yuan-Li</creatorcontrib><creatorcontrib>Wang, Li-Zhen</creatorcontrib><title>Honeycomb-like amorphous VPO4/C spheres with improved sodium storage performance as anode materials for sodium-ion batteries</title><title>Ionics</title><addtitle>Ionics</addtitle><description>In this article, honeycomb-like amorphous VPO 4 /C spheres were successfully synthesized via a sol-gel combined hydrothermal route and then tested as anode materials for sodium-ion batteries. After characterized by structure analysis, morphological observation, and composition determination, the prepared VPO 4 /C materials exhibit amorphous structure and spherical morphology with honeycomb-like core framework shielded by compact out-layer shell when compared with its crystalline counterpart. As anode material for sodium storage performance, the amorphous VPO 4 /C delivers a high discharge capacity of 421.1 mAh g −1 at a current density of 100 mA g −1 and exhibits a good cycling stability upon 100 cycles under 500 mA g −1 . The enhancement of electrochemical sodium storage performances can be attributed to the honeycomb-like inner structure facilitating the diffusion of sodium ion and the observable compact out-layer buffering the large volume strains in cycling. Meanwhile, the observed channel-like caves can provide wealthy space for storing richer sodium ion, leading to higher capacity. The proposed viewpoint points out that the synthesis of amorphous architecture is a new strategy to break through the limitation of anode materials for sodium-ion batteries.</description><subject>Amorphous materials</subject><subject>Anodes</subject><subject>Caves</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Cycles</subject><subject>Diffusion layers</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Energy Storage</subject><subject>Morphology</subject><subject>Optical and Electronic Materials</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><subject>Short Communication</subject><subject>Sodium</subject><subject>Sodium diffusion</subject><subject>Sodium-ion batteries</subject><subject>Sol-gel processes</subject><subject>Storage batteries</subject><subject>Structural analysis</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAYhoMoOKd_wFPAc9z3NWnTHGWoEwbzoF5D2qZb59rUpHMM_PFmTvDmKYf3fd4vPIRcI9wigJwExDRHBgkw4BlXbHdCRphnCQOZwSkZgRKSSRDynFyEsAbIMkzkiHzNXGf3pWsLtmneLTWt8_3KbQN9e16IyZSGfmW9DXTXDCvatL13n7aiwVXNtqVhcN4sLe2tr51vTVfGhUBN5ypLWzNY35hNoDH7JVjjOlqY4ZDYcEnO6pjbq993TF4f7l-mMzZfPD5N7-as5KgGxi2gULlAQOTCqlTIwqAyJhE8U0WdViovU57WkudJjUUJpax4iSCV4WByPiY3x934-4-tDYNeu63v4kmdCMx4AnkmYys5tkrvQvC21r1vWuP3GkEfLOujZR0t6x_LehchfoRCLHdL6_-m_6G-AdXngXc</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Yan, Ji</creator><creator>Zhang, Jian-Hui</creator><creator>Qi, Jia-Jia</creator><creator>Li, Lei</creator><creator>Luo, He-Wei</creator><creator>Cao, Yang</creator><creator>Zhang, Yong</creator><creator>Ding, Yuan-Li</creator><creator>Wang, Li-Zhen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200701</creationdate><title>Honeycomb-like amorphous VPO4/C spheres with improved sodium storage performance as anode materials for sodium-ion batteries</title><author>Yan, Ji ; Zhang, Jian-Hui ; Qi, Jia-Jia ; Li, Lei ; Luo, He-Wei ; Cao, Yang ; Zhang, Yong ; Ding, Yuan-Li ; Wang, Li-Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3e014984101134e9547ba19aa24369bf5d98c535f7382f1bc0c7d3c1079a30a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amorphous materials</topic><topic>Anodes</topic><topic>Caves</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Cycles</topic><topic>Diffusion layers</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Energy Storage</topic><topic>Morphology</topic><topic>Optical and Electronic Materials</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><topic>Short Communication</topic><topic>Sodium</topic><topic>Sodium diffusion</topic><topic>Sodium-ion batteries</topic><topic>Sol-gel processes</topic><topic>Storage batteries</topic><topic>Structural analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Ji</creatorcontrib><creatorcontrib>Zhang, Jian-Hui</creatorcontrib><creatorcontrib>Qi, Jia-Jia</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Luo, He-Wei</creatorcontrib><creatorcontrib>Cao, Yang</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Ding, Yuan-Li</creatorcontrib><creatorcontrib>Wang, Li-Zhen</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Ji</au><au>Zhang, Jian-Hui</au><au>Qi, Jia-Jia</au><au>Li, Lei</au><au>Luo, He-Wei</au><au>Cao, Yang</au><au>Zhang, Yong</au><au>Ding, Yuan-Li</au><au>Wang, Li-Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Honeycomb-like amorphous VPO4/C spheres with improved sodium storage performance as anode materials for sodium-ion batteries</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>26</volume><issue>7</issue><spage>3669</spage><epage>3676</epage><pages>3669-3676</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>In this article, honeycomb-like amorphous VPO 4 /C spheres were successfully synthesized via a sol-gel combined hydrothermal route and then tested as anode materials for sodium-ion batteries. After characterized by structure analysis, morphological observation, and composition determination, the prepared VPO 4 /C materials exhibit amorphous structure and spherical morphology with honeycomb-like core framework shielded by compact out-layer shell when compared with its crystalline counterpart. As anode material for sodium storage performance, the amorphous VPO 4 /C delivers a high discharge capacity of 421.1 mAh g −1 at a current density of 100 mA g −1 and exhibits a good cycling stability upon 100 cycles under 500 mA g −1 . The enhancement of electrochemical sodium storage performances can be attributed to the honeycomb-like inner structure facilitating the diffusion of sodium ion and the observable compact out-layer buffering the large volume strains in cycling. Meanwhile, the observed channel-like caves can provide wealthy space for storing richer sodium ion, leading to higher capacity. The proposed viewpoint points out that the synthesis of amorphous architecture is a new strategy to break through the limitation of anode materials for sodium-ion batteries.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-020-03639-w</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2020-07, Vol.26 (7), p.3669-3676
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_2416320867
source Springer Nature - Complete Springer Journals
subjects Amorphous materials
Anodes
Caves
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Cycles
Diffusion layers
Electrochemistry
Electrode materials
Energy Storage
Morphology
Optical and Electronic Materials
Rechargeable batteries
Renewable and Green Energy
Short Communication
Sodium
Sodium diffusion
Sodium-ion batteries
Sol-gel processes
Storage batteries
Structural analysis
title Honeycomb-like amorphous VPO4/C spheres with improved sodium storage performance as anode materials for sodium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A44%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Honeycomb-like%20amorphous%20VPO4/C%20spheres%20with%20improved%20sodium%20storage%20performance%20as%20anode%20materials%20for%20sodium-ion%20batteries&rft.jtitle=Ionics&rft.au=Yan,%20Ji&rft.date=2020-07-01&rft.volume=26&rft.issue=7&rft.spage=3669&rft.epage=3676&rft.pages=3669-3676&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-020-03639-w&rft_dat=%3Cproquest_cross%3E2416320867%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416320867&rft_id=info:pmid/&rfr_iscdi=true