Honeycomb-like amorphous VPO4/C spheres with improved sodium storage performance as anode materials for sodium-ion batteries
In this article, honeycomb-like amorphous VPO 4 /C spheres were successfully synthesized via a sol-gel combined hydrothermal route and then tested as anode materials for sodium-ion batteries. After characterized by structure analysis, morphological observation, and composition determination, the pre...
Gespeichert in:
Veröffentlicht in: | Ionics 2020-07, Vol.26 (7), p.3669-3676 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3676 |
---|---|
container_issue | 7 |
container_start_page | 3669 |
container_title | Ionics |
container_volume | 26 |
creator | Yan, Ji Zhang, Jian-Hui Qi, Jia-Jia Li, Lei Luo, He-Wei Cao, Yang Zhang, Yong Ding, Yuan-Li Wang, Li-Zhen |
description | In this article, honeycomb-like amorphous VPO
4
/C spheres were successfully synthesized via a sol-gel combined hydrothermal route and then tested as anode materials for sodium-ion batteries. After characterized by structure analysis, morphological observation, and composition determination, the prepared VPO
4
/C materials exhibit amorphous structure and spherical morphology with honeycomb-like core framework shielded by compact out-layer shell when compared with its crystalline counterpart. As anode material for sodium storage performance, the amorphous VPO
4
/C delivers a high discharge capacity of 421.1 mAh g
−1
at a current density of 100 mA g
−1
and exhibits a good cycling stability upon 100 cycles under 500 mA g
−1
. The enhancement of electrochemical sodium storage performances can be attributed to the honeycomb-like inner structure facilitating the diffusion of sodium ion and the observable compact out-layer buffering the large volume strains in cycling. Meanwhile, the observed channel-like caves can provide wealthy space for storing richer sodium ion, leading to higher capacity. The proposed viewpoint points out that the synthesis of amorphous architecture is a new strategy to break through the limitation of anode materials for sodium-ion batteries. |
doi_str_mv | 10.1007/s11581-020-03639-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2416320867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2416320867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3e014984101134e9547ba19aa24369bf5d98c535f7382f1bc0c7d3c1079a30a83</originalsourceid><addsrcrecordid>eNp9kEFLwzAYhoMoOKd_wFPAc9z3NWnTHGWoEwbzoF5D2qZb59rUpHMM_PFmTvDmKYf3fd4vPIRcI9wigJwExDRHBgkw4BlXbHdCRphnCQOZwSkZgRKSSRDynFyEsAbIMkzkiHzNXGf3pWsLtmneLTWt8_3KbQN9e16IyZSGfmW9DXTXDCvatL13n7aiwVXNtqVhcN4sLe2tr51vTVfGhUBN5ypLWzNY35hNoDH7JVjjOlqY4ZDYcEnO6pjbq993TF4f7l-mMzZfPD5N7-as5KgGxi2gULlAQOTCqlTIwqAyJhE8U0WdViovU57WkudJjUUJpax4iSCV4WByPiY3x934-4-tDYNeu63v4kmdCMx4AnkmYys5tkrvQvC21r1vWuP3GkEfLOujZR0t6x_LehchfoRCLHdL6_-m_6G-AdXngXc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416320867</pqid></control><display><type>article</type><title>Honeycomb-like amorphous VPO4/C spheres with improved sodium storage performance as anode materials for sodium-ion batteries</title><source>Springer Nature - Complete Springer Journals</source><creator>Yan, Ji ; Zhang, Jian-Hui ; Qi, Jia-Jia ; Li, Lei ; Luo, He-Wei ; Cao, Yang ; Zhang, Yong ; Ding, Yuan-Li ; Wang, Li-Zhen</creator><creatorcontrib>Yan, Ji ; Zhang, Jian-Hui ; Qi, Jia-Jia ; Li, Lei ; Luo, He-Wei ; Cao, Yang ; Zhang, Yong ; Ding, Yuan-Li ; Wang, Li-Zhen</creatorcontrib><description>In this article, honeycomb-like amorphous VPO
4
/C spheres were successfully synthesized via a sol-gel combined hydrothermal route and then tested as anode materials for sodium-ion batteries. After characterized by structure analysis, morphological observation, and composition determination, the prepared VPO
4
/C materials exhibit amorphous structure and spherical morphology with honeycomb-like core framework shielded by compact out-layer shell when compared with its crystalline counterpart. As anode material for sodium storage performance, the amorphous VPO
4
/C delivers a high discharge capacity of 421.1 mAh g
−1
at a current density of 100 mA g
−1
and exhibits a good cycling stability upon 100 cycles under 500 mA g
−1
. The enhancement of electrochemical sodium storage performances can be attributed to the honeycomb-like inner structure facilitating the diffusion of sodium ion and the observable compact out-layer buffering the large volume strains in cycling. Meanwhile, the observed channel-like caves can provide wealthy space for storing richer sodium ion, leading to higher capacity. The proposed viewpoint points out that the synthesis of amorphous architecture is a new strategy to break through the limitation of anode materials for sodium-ion batteries.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-020-03639-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amorphous materials ; Anodes ; Caves ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Cycles ; Diffusion layers ; Electrochemistry ; Electrode materials ; Energy Storage ; Morphology ; Optical and Electronic Materials ; Rechargeable batteries ; Renewable and Green Energy ; Short Communication ; Sodium ; Sodium diffusion ; Sodium-ion batteries ; Sol-gel processes ; Storage batteries ; Structural analysis</subject><ispartof>Ionics, 2020-07, Vol.26 (7), p.3669-3676</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3e014984101134e9547ba19aa24369bf5d98c535f7382f1bc0c7d3c1079a30a83</citedby><cites>FETCH-LOGICAL-c319t-3e014984101134e9547ba19aa24369bf5d98c535f7382f1bc0c7d3c1079a30a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-020-03639-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-020-03639-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Yan, Ji</creatorcontrib><creatorcontrib>Zhang, Jian-Hui</creatorcontrib><creatorcontrib>Qi, Jia-Jia</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Luo, He-Wei</creatorcontrib><creatorcontrib>Cao, Yang</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Ding, Yuan-Li</creatorcontrib><creatorcontrib>Wang, Li-Zhen</creatorcontrib><title>Honeycomb-like amorphous VPO4/C spheres with improved sodium storage performance as anode materials for sodium-ion batteries</title><title>Ionics</title><addtitle>Ionics</addtitle><description>In this article, honeycomb-like amorphous VPO
4
/C spheres were successfully synthesized via a sol-gel combined hydrothermal route and then tested as anode materials for sodium-ion batteries. After characterized by structure analysis, morphological observation, and composition determination, the prepared VPO
4
/C materials exhibit amorphous structure and spherical morphology with honeycomb-like core framework shielded by compact out-layer shell when compared with its crystalline counterpart. As anode material for sodium storage performance, the amorphous VPO
4
/C delivers a high discharge capacity of 421.1 mAh g
−1
at a current density of 100 mA g
−1
and exhibits a good cycling stability upon 100 cycles under 500 mA g
−1
. The enhancement of electrochemical sodium storage performances can be attributed to the honeycomb-like inner structure facilitating the diffusion of sodium ion and the observable compact out-layer buffering the large volume strains in cycling. Meanwhile, the observed channel-like caves can provide wealthy space for storing richer sodium ion, leading to higher capacity. The proposed viewpoint points out that the synthesis of amorphous architecture is a new strategy to break through the limitation of anode materials for sodium-ion batteries.</description><subject>Amorphous materials</subject><subject>Anodes</subject><subject>Caves</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Cycles</subject><subject>Diffusion layers</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Energy Storage</subject><subject>Morphology</subject><subject>Optical and Electronic Materials</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><subject>Short Communication</subject><subject>Sodium</subject><subject>Sodium diffusion</subject><subject>Sodium-ion batteries</subject><subject>Sol-gel processes</subject><subject>Storage batteries</subject><subject>Structural analysis</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAYhoMoOKd_wFPAc9z3NWnTHGWoEwbzoF5D2qZb59rUpHMM_PFmTvDmKYf3fd4vPIRcI9wigJwExDRHBgkw4BlXbHdCRphnCQOZwSkZgRKSSRDynFyEsAbIMkzkiHzNXGf3pWsLtmneLTWt8_3KbQN9e16IyZSGfmW9DXTXDCvatL13n7aiwVXNtqVhcN4sLe2tr51vTVfGhUBN5ypLWzNY35hNoDH7JVjjOlqY4ZDYcEnO6pjbq993TF4f7l-mMzZfPD5N7-as5KgGxi2gULlAQOTCqlTIwqAyJhE8U0WdViovU57WkudJjUUJpax4iSCV4WByPiY3x934-4-tDYNeu63v4kmdCMx4AnkmYys5tkrvQvC21r1vWuP3GkEfLOujZR0t6x_LehchfoRCLHdL6_-m_6G-AdXngXc</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Yan, Ji</creator><creator>Zhang, Jian-Hui</creator><creator>Qi, Jia-Jia</creator><creator>Li, Lei</creator><creator>Luo, He-Wei</creator><creator>Cao, Yang</creator><creator>Zhang, Yong</creator><creator>Ding, Yuan-Li</creator><creator>Wang, Li-Zhen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200701</creationdate><title>Honeycomb-like amorphous VPO4/C spheres with improved sodium storage performance as anode materials for sodium-ion batteries</title><author>Yan, Ji ; Zhang, Jian-Hui ; Qi, Jia-Jia ; Li, Lei ; Luo, He-Wei ; Cao, Yang ; Zhang, Yong ; Ding, Yuan-Li ; Wang, Li-Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3e014984101134e9547ba19aa24369bf5d98c535f7382f1bc0c7d3c1079a30a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amorphous materials</topic><topic>Anodes</topic><topic>Caves</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Cycles</topic><topic>Diffusion layers</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Energy Storage</topic><topic>Morphology</topic><topic>Optical and Electronic Materials</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><topic>Short Communication</topic><topic>Sodium</topic><topic>Sodium diffusion</topic><topic>Sodium-ion batteries</topic><topic>Sol-gel processes</topic><topic>Storage batteries</topic><topic>Structural analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Ji</creatorcontrib><creatorcontrib>Zhang, Jian-Hui</creatorcontrib><creatorcontrib>Qi, Jia-Jia</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Luo, He-Wei</creatorcontrib><creatorcontrib>Cao, Yang</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Ding, Yuan-Li</creatorcontrib><creatorcontrib>Wang, Li-Zhen</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Ji</au><au>Zhang, Jian-Hui</au><au>Qi, Jia-Jia</au><au>Li, Lei</au><au>Luo, He-Wei</au><au>Cao, Yang</au><au>Zhang, Yong</au><au>Ding, Yuan-Li</au><au>Wang, Li-Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Honeycomb-like amorphous VPO4/C spheres with improved sodium storage performance as anode materials for sodium-ion batteries</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>26</volume><issue>7</issue><spage>3669</spage><epage>3676</epage><pages>3669-3676</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>In this article, honeycomb-like amorphous VPO
4
/C spheres were successfully synthesized via a sol-gel combined hydrothermal route and then tested as anode materials for sodium-ion batteries. After characterized by structure analysis, morphological observation, and composition determination, the prepared VPO
4
/C materials exhibit amorphous structure and spherical morphology with honeycomb-like core framework shielded by compact out-layer shell when compared with its crystalline counterpart. As anode material for sodium storage performance, the amorphous VPO
4
/C delivers a high discharge capacity of 421.1 mAh g
−1
at a current density of 100 mA g
−1
and exhibits a good cycling stability upon 100 cycles under 500 mA g
−1
. The enhancement of electrochemical sodium storage performances can be attributed to the honeycomb-like inner structure facilitating the diffusion of sodium ion and the observable compact out-layer buffering the large volume strains in cycling. Meanwhile, the observed channel-like caves can provide wealthy space for storing richer sodium ion, leading to higher capacity. The proposed viewpoint points out that the synthesis of amorphous architecture is a new strategy to break through the limitation of anode materials for sodium-ion batteries.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-020-03639-w</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-7047 |
ispartof | Ionics, 2020-07, Vol.26 (7), p.3669-3676 |
issn | 0947-7047 1862-0760 |
language | eng |
recordid | cdi_proquest_journals_2416320867 |
source | Springer Nature - Complete Springer Journals |
subjects | Amorphous materials Anodes Caves Chemistry Chemistry and Materials Science Condensed Matter Physics Cycles Diffusion layers Electrochemistry Electrode materials Energy Storage Morphology Optical and Electronic Materials Rechargeable batteries Renewable and Green Energy Short Communication Sodium Sodium diffusion Sodium-ion batteries Sol-gel processes Storage batteries Structural analysis |
title | Honeycomb-like amorphous VPO4/C spheres with improved sodium storage performance as anode materials for sodium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A44%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Honeycomb-like%20amorphous%20VPO4/C%20spheres%20with%20improved%20sodium%20storage%20performance%20as%20anode%20materials%20for%20sodium-ion%20batteries&rft.jtitle=Ionics&rft.au=Yan,%20Ji&rft.date=2020-07-01&rft.volume=26&rft.issue=7&rft.spage=3669&rft.epage=3676&rft.pages=3669-3676&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-020-03639-w&rft_dat=%3Cproquest_cross%3E2416320867%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416320867&rft_id=info:pmid/&rfr_iscdi=true |