The matching augmentation problem: a 74-approximation algorithm
We present a 7 4 approximation algorithm for the matching augmentation problem (MAP): given a multi-graph with edges of cost either zero or one such that the edges of cost zero form a matching, find a 2-edge connected spanning subgraph (2-ECSS) of minimum cost. We first present a reduction of any gi...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2020, Vol.182 (1-2), p.315-354 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a
7
4
approximation algorithm for the matching augmentation problem (MAP): given a multi-graph with edges of cost either zero or one such that the edges of cost zero form a matching, find a 2-edge connected spanning subgraph (2-ECSS) of minimum cost. We first present a reduction of any given MAP instance to a collection of well-structured MAP instances such that the approximation guarantee is preserved. Then we present a
7
4
approximation algorithm for a well-structured MAP instance. The algorithm starts with a min-cost 2-edge cover and then applies ear-augmentation steps. We analyze the cost of the ear-augmentations using an approach similar to the one proposed by Vempala and Vetta for the (unweighted) min-size 2-ECSS problem (in: Jansen and Khuller (eds.) Approximation Algorithms for Combinatorial Optimization, Third International Workshop, APPROX 2000, Proceedings, LNCS 1913, pp.262–273, Springer, Berlin,
2000
). |
---|---|
ISSN: | 0025-5610 1436-4646 |
DOI: | 10.1007/s10107-019-01394-z |