The matching augmentation problem: a 74-approximation algorithm

We present a 7 4 approximation algorithm for the matching augmentation problem (MAP): given a multi-graph with edges of cost either zero or one such that the edges of cost zero form a matching, find a 2-edge connected spanning subgraph (2-ECSS) of minimum cost. We first present a reduction of any gi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2020, Vol.182 (1-2), p.315-354
Hauptverfasser: Cheriyan, J., Dippel, J., Grandoni, F., Khan, A., Narayan, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a 7 4 approximation algorithm for the matching augmentation problem (MAP): given a multi-graph with edges of cost either zero or one such that the edges of cost zero form a matching, find a 2-edge connected spanning subgraph (2-ECSS) of minimum cost. We first present a reduction of any given MAP instance to a collection of well-structured MAP instances such that the approximation guarantee is preserved. Then we present a 7 4 approximation algorithm for a well-structured MAP instance. The algorithm starts with a min-cost 2-edge cover and then applies ear-augmentation steps. We analyze the cost of the ear-augmentations using an approach similar to the one proposed by Vempala and Vetta for the (unweighted) min-size 2-ECSS problem (in: Jansen and Khuller (eds.) Approximation Algorithms for Combinatorial Optimization, Third International Workshop, APPROX 2000, Proceedings, LNCS 1913, pp.262–273, Springer, Berlin, 2000 ).
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-019-01394-z