Microstructure, hot deformation behavior, and textural evolution of Mg–3wt%Zn–1wt%Ca–0.5wt%Sr Alloy
The Mg–Zn–Ca–Sr alloy has good application prospects as a bone implant material; however, the as-cast alloy has both poor plasticity and formability, and there are few studies on its deformation properties. In this study, the microstructure, deformation behavior, textural evolution, and processing m...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2020-09, Vol.55 (26), p.12434-12447 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12447 |
---|---|
container_issue | 26 |
container_start_page | 12434 |
container_title | Journal of materials science |
container_volume | 55 |
creator | Liu, Hening Li, Yongjun Zhang, Kui Li, Xinggang Ma, Minglong Shi, Guoliang Yuan, Jiawei Wang, Kaikun |
description | The Mg–Zn–Ca–Sr alloy has good application prospects as a bone implant material; however, the as-cast alloy has both poor plasticity and formability, and there are few studies on its deformation properties. In this study, the microstructure, deformation behavior, textural evolution, and processing map of an Mg–3wt%Zn–1wt%Ca–0.5wt%Sr alloy were studied via a compression test using a Gleeble 1500D thermo-mechanical simulator. The mean apparent activation energy of the hot compression deformation of the Mg–3wt%Zn–1wt%Ca–0.5wt%Sr alloy was 250.44 kJ/mol. With an increase in temperature, both the grain size and the degree of dynamic recrystallization increased. Dynamically recrystallized grains predominantly nucleated near the grain boundary and the secondary phases. After compression, the alloy had a strong basal texture, and its textural strength decreased at first and then increased slightly as the deformation temperature rose. The optimal process parameters of the as-cast Mg–Zn–Ca–Sr alloy involved deformation temperatures of 603–633 K and strain rates of 0.03–0.005 s
–1
. |
doi_str_mv | 10.1007/s10853-020-04817-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2416040159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627546985</galeid><sourcerecordid>A627546985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-6269fb24ad992af5ba53cfa0e4ec77ab3a900f542f396add04131e34ba537c663</originalsourceid><addsrcrecordid>eNp9kc1qGzEUhUVJoY7bF-hqoGRRyLhXv-NZGpOkgYRAkm66Edczkj1mPHIlTeLs8g55wz5J5EwheFO0uIfLdyRxDiFfKUwoQPEjUJhKngODHMSUFvnuAxlRWfBcTIEfkREAYzkTin4ixyGsAUAWjI5Ic91U3oXo-yr23pxmKxez2ljnNxgb12ULs8KHxvnTDLs6i2aXMGwz8-Da_g1wNrte_n1-4Y_x5HeXBE1ijknARCZ557NZ27qnz-SjxTaYL__mmPw6P7uf_8yvbi4u57OrvOIli7liqrQLJrAuS4ZWLlDyyiIYYaqiwAXHEsBKwSwvFdY1CMqp4WLPFZVSfEy-DfduvfvTmxD12vW-S09qJqgCAVSWiZoM1BJbo5vOuuixSqc2m6ZynbFN2s8UK6RQZcp2TL4fGBKzD2OJfQj68u72kGUDu482eGP11jcb9E-agt73pYe-dOpLv_Wld8nEB1NIcLc0_v3f_3G9AgyImo8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416040159</pqid></control><display><type>article</type><title>Microstructure, hot deformation behavior, and textural evolution of Mg–3wt%Zn–1wt%Ca–0.5wt%Sr Alloy</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Hening ; Li, Yongjun ; Zhang, Kui ; Li, Xinggang ; Ma, Minglong ; Shi, Guoliang ; Yuan, Jiawei ; Wang, Kaikun</creator><creatorcontrib>Liu, Hening ; Li, Yongjun ; Zhang, Kui ; Li, Xinggang ; Ma, Minglong ; Shi, Guoliang ; Yuan, Jiawei ; Wang, Kaikun</creatorcontrib><description>The Mg–Zn–Ca–Sr alloy has good application prospects as a bone implant material; however, the as-cast alloy has both poor plasticity and formability, and there are few studies on its deformation properties. In this study, the microstructure, deformation behavior, textural evolution, and processing map of an Mg–3wt%Zn–1wt%Ca–0.5wt%Sr alloy were studied via a compression test using a Gleeble 1500D thermo-mechanical simulator. The mean apparent activation energy of the hot compression deformation of the Mg–3wt%Zn–1wt%Ca–0.5wt%Sr alloy was 250.44 kJ/mol. With an increase in temperature, both the grain size and the degree of dynamic recrystallization increased. Dynamically recrystallized grains predominantly nucleated near the grain boundary and the secondary phases. After compression, the alloy had a strong basal texture, and its textural strength decreased at first and then increased slightly as the deformation temperature rose. The optimal process parameters of the as-cast Mg–Zn–Ca–Sr alloy involved deformation temperatures of 603–633 K and strain rates of 0.03–0.005 s
–1
.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-020-04817-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activation energy ; Alloys ; Calcium ; Casting alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Compression tests ; Compressive strength ; Crystallography and Scattering Methods ; Deformation ; Dynamic recrystallization ; Evolution ; Grain boundaries ; Grain size ; Hot pressing ; Magnesium ; Materials Science ; Metals & Corrosion ; Microstructure ; Polymer Sciences ; Process mapping ; Process parameters ; Solid Mechanics ; Specialty metals industry ; Strontium ; Thermal simulators ; Zinc ; Zinc compounds</subject><ispartof>Journal of materials science, 2020-09, Vol.55 (26), p.12434-12447</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-6269fb24ad992af5ba53cfa0e4ec77ab3a900f542f396add04131e34ba537c663</citedby><cites>FETCH-LOGICAL-c392t-6269fb24ad992af5ba53cfa0e4ec77ab3a900f542f396add04131e34ba537c663</cites><orcidid>0000-0002-4607-4502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-020-04817-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-020-04817-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Liu, Hening</creatorcontrib><creatorcontrib>Li, Yongjun</creatorcontrib><creatorcontrib>Zhang, Kui</creatorcontrib><creatorcontrib>Li, Xinggang</creatorcontrib><creatorcontrib>Ma, Minglong</creatorcontrib><creatorcontrib>Shi, Guoliang</creatorcontrib><creatorcontrib>Yuan, Jiawei</creatorcontrib><creatorcontrib>Wang, Kaikun</creatorcontrib><title>Microstructure, hot deformation behavior, and textural evolution of Mg–3wt%Zn–1wt%Ca–0.5wt%Sr Alloy</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The Mg–Zn–Ca–Sr alloy has good application prospects as a bone implant material; however, the as-cast alloy has both poor plasticity and formability, and there are few studies on its deformation properties. In this study, the microstructure, deformation behavior, textural evolution, and processing map of an Mg–3wt%Zn–1wt%Ca–0.5wt%Sr alloy were studied via a compression test using a Gleeble 1500D thermo-mechanical simulator. The mean apparent activation energy of the hot compression deformation of the Mg–3wt%Zn–1wt%Ca–0.5wt%Sr alloy was 250.44 kJ/mol. With an increase in temperature, both the grain size and the degree of dynamic recrystallization increased. Dynamically recrystallized grains predominantly nucleated near the grain boundary and the secondary phases. After compression, the alloy had a strong basal texture, and its textural strength decreased at first and then increased slightly as the deformation temperature rose. The optimal process parameters of the as-cast Mg–Zn–Ca–Sr alloy involved deformation temperatures of 603–633 K and strain rates of 0.03–0.005 s
–1
.</description><subject>Activation energy</subject><subject>Alloys</subject><subject>Calcium</subject><subject>Casting alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Compression tests</subject><subject>Compressive strength</subject><subject>Crystallography and Scattering Methods</subject><subject>Deformation</subject><subject>Dynamic recrystallization</subject><subject>Evolution</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Hot pressing</subject><subject>Magnesium</subject><subject>Materials Science</subject><subject>Metals & Corrosion</subject><subject>Microstructure</subject><subject>Polymer Sciences</subject><subject>Process mapping</subject><subject>Process parameters</subject><subject>Solid Mechanics</subject><subject>Specialty metals industry</subject><subject>Strontium</subject><subject>Thermal simulators</subject><subject>Zinc</subject><subject>Zinc compounds</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc1qGzEUhUVJoY7bF-hqoGRRyLhXv-NZGpOkgYRAkm66Edczkj1mPHIlTeLs8g55wz5J5EwheFO0uIfLdyRxDiFfKUwoQPEjUJhKngODHMSUFvnuAxlRWfBcTIEfkREAYzkTin4ixyGsAUAWjI5Ic91U3oXo-yr23pxmKxez2ljnNxgb12ULs8KHxvnTDLs6i2aXMGwz8-Da_g1wNrte_n1-4Y_x5HeXBE1ijknARCZ557NZ27qnz-SjxTaYL__mmPw6P7uf_8yvbi4u57OrvOIli7liqrQLJrAuS4ZWLlDyyiIYYaqiwAXHEsBKwSwvFdY1CMqp4WLPFZVSfEy-DfduvfvTmxD12vW-S09qJqgCAVSWiZoM1BJbo5vOuuixSqc2m6ZynbFN2s8UK6RQZcp2TL4fGBKzD2OJfQj68u72kGUDu482eGP11jcb9E-agt73pYe-dOpLv_Wld8nEB1NIcLc0_v3f_3G9AgyImo8</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Liu, Hening</creator><creator>Li, Yongjun</creator><creator>Zhang, Kui</creator><creator>Li, Xinggang</creator><creator>Ma, Minglong</creator><creator>Shi, Guoliang</creator><creator>Yuan, Jiawei</creator><creator>Wang, Kaikun</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-4607-4502</orcidid></search><sort><creationdate>20200901</creationdate><title>Microstructure, hot deformation behavior, and textural evolution of Mg–3wt%Zn–1wt%Ca–0.5wt%Sr Alloy</title><author>Liu, Hening ; Li, Yongjun ; Zhang, Kui ; Li, Xinggang ; Ma, Minglong ; Shi, Guoliang ; Yuan, Jiawei ; Wang, Kaikun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-6269fb24ad992af5ba53cfa0e4ec77ab3a900f542f396add04131e34ba537c663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation energy</topic><topic>Alloys</topic><topic>Calcium</topic><topic>Casting alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Compression tests</topic><topic>Compressive strength</topic><topic>Crystallography and Scattering Methods</topic><topic>Deformation</topic><topic>Dynamic recrystallization</topic><topic>Evolution</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Hot pressing</topic><topic>Magnesium</topic><topic>Materials Science</topic><topic>Metals & Corrosion</topic><topic>Microstructure</topic><topic>Polymer Sciences</topic><topic>Process mapping</topic><topic>Process parameters</topic><topic>Solid Mechanics</topic><topic>Specialty metals industry</topic><topic>Strontium</topic><topic>Thermal simulators</topic><topic>Zinc</topic><topic>Zinc compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hening</creatorcontrib><creatorcontrib>Li, Yongjun</creatorcontrib><creatorcontrib>Zhang, Kui</creatorcontrib><creatorcontrib>Li, Xinggang</creatorcontrib><creatorcontrib>Ma, Minglong</creatorcontrib><creatorcontrib>Shi, Guoliang</creatorcontrib><creatorcontrib>Yuan, Jiawei</creatorcontrib><creatorcontrib>Wang, Kaikun</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Hening</au><au>Li, Yongjun</au><au>Zhang, Kui</au><au>Li, Xinggang</au><au>Ma, Minglong</au><au>Shi, Guoliang</au><au>Yuan, Jiawei</au><au>Wang, Kaikun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure, hot deformation behavior, and textural evolution of Mg–3wt%Zn–1wt%Ca–0.5wt%Sr Alloy</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>55</volume><issue>26</issue><spage>12434</spage><epage>12447</epage><pages>12434-12447</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The Mg–Zn–Ca–Sr alloy has good application prospects as a bone implant material; however, the as-cast alloy has both poor plasticity and formability, and there are few studies on its deformation properties. In this study, the microstructure, deformation behavior, textural evolution, and processing map of an Mg–3wt%Zn–1wt%Ca–0.5wt%Sr alloy were studied via a compression test using a Gleeble 1500D thermo-mechanical simulator. The mean apparent activation energy of the hot compression deformation of the Mg–3wt%Zn–1wt%Ca–0.5wt%Sr alloy was 250.44 kJ/mol. With an increase in temperature, both the grain size and the degree of dynamic recrystallization increased. Dynamically recrystallized grains predominantly nucleated near the grain boundary and the secondary phases. After compression, the alloy had a strong basal texture, and its textural strength decreased at first and then increased slightly as the deformation temperature rose. The optimal process parameters of the as-cast Mg–Zn–Ca–Sr alloy involved deformation temperatures of 603–633 K and strain rates of 0.03–0.005 s
–1
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-020-04817-x</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4607-4502</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2020-09, Vol.55 (26), p.12434-12447 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2416040159 |
source | SpringerLink Journals - AutoHoldings |
subjects | Activation energy Alloys Calcium Casting alloys Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Compression tests Compressive strength Crystallography and Scattering Methods Deformation Dynamic recrystallization Evolution Grain boundaries Grain size Hot pressing Magnesium Materials Science Metals & Corrosion Microstructure Polymer Sciences Process mapping Process parameters Solid Mechanics Specialty metals industry Strontium Thermal simulators Zinc Zinc compounds |
title | Microstructure, hot deformation behavior, and textural evolution of Mg–3wt%Zn–1wt%Ca–0.5wt%Sr Alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure,%20hot%20deformation%20behavior,%20and%20textural%20evolution%20of%20Mg%E2%80%933wt%25Zn%E2%80%931wt%25Ca%E2%80%930.5wt%25Sr%20Alloy&rft.jtitle=Journal%20of%20materials%20science&rft.au=Liu,%20Hening&rft.date=2020-09-01&rft.volume=55&rft.issue=26&rft.spage=12434&rft.epage=12447&rft.pages=12434-12447&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-020-04817-x&rft_dat=%3Cgale_proqu%3EA627546985%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416040159&rft_id=info:pmid/&rft_galeid=A627546985&rfr_iscdi=true |