Microstructure, hot deformation behavior, and textural evolution of Mg–3wt%Zn–1wt%Ca–0.5wt%Sr Alloy

The Mg–Zn–Ca–Sr alloy has good application prospects as a bone implant material; however, the as-cast alloy has both poor plasticity and formability, and there are few studies on its deformation properties. In this study, the microstructure, deformation behavior, textural evolution, and processing m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2020-09, Vol.55 (26), p.12434-12447
Hauptverfasser: Liu, Hening, Li, Yongjun, Zhang, Kui, Li, Xinggang, Ma, Minglong, Shi, Guoliang, Yuan, Jiawei, Wang, Kaikun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12447
container_issue 26
container_start_page 12434
container_title Journal of materials science
container_volume 55
creator Liu, Hening
Li, Yongjun
Zhang, Kui
Li, Xinggang
Ma, Minglong
Shi, Guoliang
Yuan, Jiawei
Wang, Kaikun
description The Mg–Zn–Ca–Sr alloy has good application prospects as a bone implant material; however, the as-cast alloy has both poor plasticity and formability, and there are few studies on its deformation properties. In this study, the microstructure, deformation behavior, textural evolution, and processing map of an Mg–3wt%Zn–1wt%Ca–0.5wt%Sr alloy were studied via a compression test using a Gleeble 1500D thermo-mechanical simulator. The mean apparent activation energy of the hot compression deformation of the Mg–3wt%Zn–1wt%Ca–0.5wt%Sr alloy was 250.44 kJ/mol. With an increase in temperature, both the grain size and the degree of dynamic recrystallization increased. Dynamically recrystallized grains predominantly nucleated near the grain boundary and the secondary phases. After compression, the alloy had a strong basal texture, and its textural strength decreased at first and then increased slightly as the deformation temperature rose. The optimal process parameters of the as-cast Mg–Zn–Ca–Sr alloy involved deformation temperatures of 603–633 K and strain rates of 0.03–0.005 s –1 .
doi_str_mv 10.1007/s10853-020-04817-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2416040159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627546985</galeid><sourcerecordid>A627546985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-6269fb24ad992af5ba53cfa0e4ec77ab3a900f542f396add04131e34ba537c663</originalsourceid><addsrcrecordid>eNp9kc1qGzEUhUVJoY7bF-hqoGRRyLhXv-NZGpOkgYRAkm66Edczkj1mPHIlTeLs8g55wz5J5EwheFO0uIfLdyRxDiFfKUwoQPEjUJhKngODHMSUFvnuAxlRWfBcTIEfkREAYzkTin4ixyGsAUAWjI5Ic91U3oXo-yr23pxmKxez2ljnNxgb12ULs8KHxvnTDLs6i2aXMGwz8-Da_g1wNrte_n1-4Y_x5HeXBE1ijknARCZ557NZ27qnz-SjxTaYL__mmPw6P7uf_8yvbi4u57OrvOIli7liqrQLJrAuS4ZWLlDyyiIYYaqiwAXHEsBKwSwvFdY1CMqp4WLPFZVSfEy-DfduvfvTmxD12vW-S09qJqgCAVSWiZoM1BJbo5vOuuixSqc2m6ZynbFN2s8UK6RQZcp2TL4fGBKzD2OJfQj68u72kGUDu482eGP11jcb9E-agt73pYe-dOpLv_Wld8nEB1NIcLc0_v3f_3G9AgyImo8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416040159</pqid></control><display><type>article</type><title>Microstructure, hot deformation behavior, and textural evolution of Mg–3wt%Zn–1wt%Ca–0.5wt%Sr Alloy</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Hening ; Li, Yongjun ; Zhang, Kui ; Li, Xinggang ; Ma, Minglong ; Shi, Guoliang ; Yuan, Jiawei ; Wang, Kaikun</creator><creatorcontrib>Liu, Hening ; Li, Yongjun ; Zhang, Kui ; Li, Xinggang ; Ma, Minglong ; Shi, Guoliang ; Yuan, Jiawei ; Wang, Kaikun</creatorcontrib><description>The Mg–Zn–Ca–Sr alloy has good application prospects as a bone implant material; however, the as-cast alloy has both poor plasticity and formability, and there are few studies on its deformation properties. In this study, the microstructure, deformation behavior, textural evolution, and processing map of an Mg–3wt%Zn–1wt%Ca–0.5wt%Sr alloy were studied via a compression test using a Gleeble 1500D thermo-mechanical simulator. The mean apparent activation energy of the hot compression deformation of the Mg–3wt%Zn–1wt%Ca–0.5wt%Sr alloy was 250.44 kJ/mol. With an increase in temperature, both the grain size and the degree of dynamic recrystallization increased. Dynamically recrystallized grains predominantly nucleated near the grain boundary and the secondary phases. After compression, the alloy had a strong basal texture, and its textural strength decreased at first and then increased slightly as the deformation temperature rose. The optimal process parameters of the as-cast Mg–Zn–Ca–Sr alloy involved deformation temperatures of 603–633 K and strain rates of 0.03–0.005 s –1 .</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-020-04817-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activation energy ; Alloys ; Calcium ; Casting alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Compression tests ; Compressive strength ; Crystallography and Scattering Methods ; Deformation ; Dynamic recrystallization ; Evolution ; Grain boundaries ; Grain size ; Hot pressing ; Magnesium ; Materials Science ; Metals &amp; Corrosion ; Microstructure ; Polymer Sciences ; Process mapping ; Process parameters ; Solid Mechanics ; Specialty metals industry ; Strontium ; Thermal simulators ; Zinc ; Zinc compounds</subject><ispartof>Journal of materials science, 2020-09, Vol.55 (26), p.12434-12447</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-6269fb24ad992af5ba53cfa0e4ec77ab3a900f542f396add04131e34ba537c663</citedby><cites>FETCH-LOGICAL-c392t-6269fb24ad992af5ba53cfa0e4ec77ab3a900f542f396add04131e34ba537c663</cites><orcidid>0000-0002-4607-4502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-020-04817-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-020-04817-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Liu, Hening</creatorcontrib><creatorcontrib>Li, Yongjun</creatorcontrib><creatorcontrib>Zhang, Kui</creatorcontrib><creatorcontrib>Li, Xinggang</creatorcontrib><creatorcontrib>Ma, Minglong</creatorcontrib><creatorcontrib>Shi, Guoliang</creatorcontrib><creatorcontrib>Yuan, Jiawei</creatorcontrib><creatorcontrib>Wang, Kaikun</creatorcontrib><title>Microstructure, hot deformation behavior, and textural evolution of Mg–3wt%Zn–1wt%Ca–0.5wt%Sr Alloy</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The Mg–Zn–Ca–Sr alloy has good application prospects as a bone implant material; however, the as-cast alloy has both poor plasticity and formability, and there are few studies on its deformation properties. In this study, the microstructure, deformation behavior, textural evolution, and processing map of an Mg–3wt%Zn–1wt%Ca–0.5wt%Sr alloy were studied via a compression test using a Gleeble 1500D thermo-mechanical simulator. The mean apparent activation energy of the hot compression deformation of the Mg–3wt%Zn–1wt%Ca–0.5wt%Sr alloy was 250.44 kJ/mol. With an increase in temperature, both the grain size and the degree of dynamic recrystallization increased. Dynamically recrystallized grains predominantly nucleated near the grain boundary and the secondary phases. After compression, the alloy had a strong basal texture, and its textural strength decreased at first and then increased slightly as the deformation temperature rose. The optimal process parameters of the as-cast Mg–Zn–Ca–Sr alloy involved deformation temperatures of 603–633 K and strain rates of 0.03–0.005 s –1 .</description><subject>Activation energy</subject><subject>Alloys</subject><subject>Calcium</subject><subject>Casting alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Compression tests</subject><subject>Compressive strength</subject><subject>Crystallography and Scattering Methods</subject><subject>Deformation</subject><subject>Dynamic recrystallization</subject><subject>Evolution</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Hot pressing</subject><subject>Magnesium</subject><subject>Materials Science</subject><subject>Metals &amp; Corrosion</subject><subject>Microstructure</subject><subject>Polymer Sciences</subject><subject>Process mapping</subject><subject>Process parameters</subject><subject>Solid Mechanics</subject><subject>Specialty metals industry</subject><subject>Strontium</subject><subject>Thermal simulators</subject><subject>Zinc</subject><subject>Zinc compounds</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc1qGzEUhUVJoY7bF-hqoGRRyLhXv-NZGpOkgYRAkm66Edczkj1mPHIlTeLs8g55wz5J5EwheFO0uIfLdyRxDiFfKUwoQPEjUJhKngODHMSUFvnuAxlRWfBcTIEfkREAYzkTin4ixyGsAUAWjI5Ic91U3oXo-yr23pxmKxez2ljnNxgb12ULs8KHxvnTDLs6i2aXMGwz8-Da_g1wNrte_n1-4Y_x5HeXBE1ijknARCZ557NZ27qnz-SjxTaYL__mmPw6P7uf_8yvbi4u57OrvOIli7liqrQLJrAuS4ZWLlDyyiIYYaqiwAXHEsBKwSwvFdY1CMqp4WLPFZVSfEy-DfduvfvTmxD12vW-S09qJqgCAVSWiZoM1BJbo5vOuuixSqc2m6ZynbFN2s8UK6RQZcp2TL4fGBKzD2OJfQj68u72kGUDu482eGP11jcb9E-agt73pYe-dOpLv_Wld8nEB1NIcLc0_v3f_3G9AgyImo8</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Liu, Hening</creator><creator>Li, Yongjun</creator><creator>Zhang, Kui</creator><creator>Li, Xinggang</creator><creator>Ma, Minglong</creator><creator>Shi, Guoliang</creator><creator>Yuan, Jiawei</creator><creator>Wang, Kaikun</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-4607-4502</orcidid></search><sort><creationdate>20200901</creationdate><title>Microstructure, hot deformation behavior, and textural evolution of Mg–3wt%Zn–1wt%Ca–0.5wt%Sr Alloy</title><author>Liu, Hening ; Li, Yongjun ; Zhang, Kui ; Li, Xinggang ; Ma, Minglong ; Shi, Guoliang ; Yuan, Jiawei ; Wang, Kaikun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-6269fb24ad992af5ba53cfa0e4ec77ab3a900f542f396add04131e34ba537c663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation energy</topic><topic>Alloys</topic><topic>Calcium</topic><topic>Casting alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Compression tests</topic><topic>Compressive strength</topic><topic>Crystallography and Scattering Methods</topic><topic>Deformation</topic><topic>Dynamic recrystallization</topic><topic>Evolution</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Hot pressing</topic><topic>Magnesium</topic><topic>Materials Science</topic><topic>Metals &amp; Corrosion</topic><topic>Microstructure</topic><topic>Polymer Sciences</topic><topic>Process mapping</topic><topic>Process parameters</topic><topic>Solid Mechanics</topic><topic>Specialty metals industry</topic><topic>Strontium</topic><topic>Thermal simulators</topic><topic>Zinc</topic><topic>Zinc compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hening</creatorcontrib><creatorcontrib>Li, Yongjun</creatorcontrib><creatorcontrib>Zhang, Kui</creatorcontrib><creatorcontrib>Li, Xinggang</creatorcontrib><creatorcontrib>Ma, Minglong</creatorcontrib><creatorcontrib>Shi, Guoliang</creatorcontrib><creatorcontrib>Yuan, Jiawei</creatorcontrib><creatorcontrib>Wang, Kaikun</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Hening</au><au>Li, Yongjun</au><au>Zhang, Kui</au><au>Li, Xinggang</au><au>Ma, Minglong</au><au>Shi, Guoliang</au><au>Yuan, Jiawei</au><au>Wang, Kaikun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure, hot deformation behavior, and textural evolution of Mg–3wt%Zn–1wt%Ca–0.5wt%Sr Alloy</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>55</volume><issue>26</issue><spage>12434</spage><epage>12447</epage><pages>12434-12447</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The Mg–Zn–Ca–Sr alloy has good application prospects as a bone implant material; however, the as-cast alloy has both poor plasticity and formability, and there are few studies on its deformation properties. In this study, the microstructure, deformation behavior, textural evolution, and processing map of an Mg–3wt%Zn–1wt%Ca–0.5wt%Sr alloy were studied via a compression test using a Gleeble 1500D thermo-mechanical simulator. The mean apparent activation energy of the hot compression deformation of the Mg–3wt%Zn–1wt%Ca–0.5wt%Sr alloy was 250.44 kJ/mol. With an increase in temperature, both the grain size and the degree of dynamic recrystallization increased. Dynamically recrystallized grains predominantly nucleated near the grain boundary and the secondary phases. After compression, the alloy had a strong basal texture, and its textural strength decreased at first and then increased slightly as the deformation temperature rose. The optimal process parameters of the as-cast Mg–Zn–Ca–Sr alloy involved deformation temperatures of 603–633 K and strain rates of 0.03–0.005 s –1 .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-020-04817-x</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4607-4502</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2020-09, Vol.55 (26), p.12434-12447
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2416040159
source SpringerLink Journals - AutoHoldings
subjects Activation energy
Alloys
Calcium
Casting alloys
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Compression tests
Compressive strength
Crystallography and Scattering Methods
Deformation
Dynamic recrystallization
Evolution
Grain boundaries
Grain size
Hot pressing
Magnesium
Materials Science
Metals & Corrosion
Microstructure
Polymer Sciences
Process mapping
Process parameters
Solid Mechanics
Specialty metals industry
Strontium
Thermal simulators
Zinc
Zinc compounds
title Microstructure, hot deformation behavior, and textural evolution of Mg–3wt%Zn–1wt%Ca–0.5wt%Sr Alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure,%20hot%20deformation%20behavior,%20and%20textural%20evolution%20of%20Mg%E2%80%933wt%25Zn%E2%80%931wt%25Ca%E2%80%930.5wt%25Sr%20Alloy&rft.jtitle=Journal%20of%20materials%20science&rft.au=Liu,%20Hening&rft.date=2020-09-01&rft.volume=55&rft.issue=26&rft.spage=12434&rft.epage=12447&rft.pages=12434-12447&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-020-04817-x&rft_dat=%3Cgale_proqu%3EA627546985%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416040159&rft_id=info:pmid/&rft_galeid=A627546985&rfr_iscdi=true