Monodispersed FeS nanoparticles confined in 3D interconnected carbon nanosheets network as an anode for high-performance lithium-ion batteries
Transition metal sulfides as the most prominent candidates with high theoretical capacities; however, serious agglomeration and enormous volumetric variation limit its application in lithium-ion batteries. Herein, a chemical blowing strategy for the synthesis of FeS nanoparticles encapsulated into 3...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2020-09, Vol.55 (26), p.12139-12150 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12150 |
---|---|
container_issue | 26 |
container_start_page | 12139 |
container_title | Journal of materials science |
container_volume | 55 |
creator | Miao, Xuan Li, Haiqiang Wang, Li Li, Yanli Sun, Dongfei Zhou, Xiaozhong Lei, Ziqiang |
description | Transition metal sulfides as the most prominent candidates with high theoretical capacities; however, serious agglomeration and enormous volumetric variation limit its application in lithium-ion batteries. Herein, a chemical blowing strategy for the synthesis of FeS nanoparticles encapsulated into 3D porous carbon framework via chemical vapor deposition method and subsequent sulfidation process. In the constructed architecture, the monodispersed FeS nanoparticles are fully encapsulated in graphitic carbon, simultaneously, confined in 3D architecture composed of 2D graphitic carbon nanosheets. The unique architecture provides a facilitated transport pathway, enhances electron conductivity and buffers the volumetric expansion of FeS. Consequently, the composite delivers a high reversible capacity of 1084.2 mAh g
−1
at 0.1 A g
−1
, excellent rate capability (723.5 mAh g
−1
at 1 A g
−1
), and outstanding cycling stability (a specific capacity of 848.3 mAh g
−1
without decay is achieved at 0.5 A g
−1
). Therefore, the present work suggests that the novel design of 3D FeS/C material provides a strategy for achieving high-performance anodes in lithium-ion batteries.
Graphic abstract
Uniformly monodispersed FeS nanoparticles confined in 3D interconnected carbon network was synthesized by using chemical vapor deposition method and subsequent sulfidation process. The hybrid electrode exhibits excellent performance with a reversible capacity of 1084.2 mAh g
−1
at 0.1 A g
−1
as well as outstanding cycling stability performance of 848.3 mAh g
−1
at 0.5 A g
−1
after 170 cycles. |
doi_str_mv | 10.1007/s10853-020-04843-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2416038913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627547002</galeid><sourcerecordid>A627547002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-8dd62485283426fab34e3abd8a8c43384231a61c5f48db30174a644cadd87d8d3</originalsourceid><addsrcrecordid>eNp9kd9qVDEQxoNYcK19Aa8CXnmRNv_OOdnLUq0WKoJtr0NOMmc3dU-yJlmqL-EzO-0KZUEkIRMmv2-GzEfIW8FPBefDWRXcdIpxyRnXRiu2fEEWohsU04arl2TBuZRM6l68Iq9rveecd4MUC_L7S045xLqFUiHQS7ihyaW8daVFv4FKfU5TTPgUE1Uf8GxQMJfAN0x6V8acniR1DdAqTdAecvlOXaUu4c4B6JQLXcfVmmEXvM8ueaCb2NZxN7OI-tE1LBuhviFHk9tUOPkbj8nd5cfbi8_s-uunq4vza-Z1t2zMhNBLbTpplJb95EalQbkxGGe8VspoqYTrhe8mbcKouBi067X2LgQzBBPUMXm3r7st-ccOarP3eVcStrRSi54rsxTqmVq5DdiYptyK83Os3p73cuj0gGNF6vQfFK4Ac8RRwRQxfyB4fyBApsHPtnK7Wu3VzbdDVu5ZX3KtBSa7LXF25ZcV3D5ab_fWW7TePllvlyhSe1FFOK2gPP_uP6o_ZtGxPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416038913</pqid></control><display><type>article</type><title>Monodispersed FeS nanoparticles confined in 3D interconnected carbon nanosheets network as an anode for high-performance lithium-ion batteries</title><source>Springer Nature - Complete Springer Journals</source><creator>Miao, Xuan ; Li, Haiqiang ; Wang, Li ; Li, Yanli ; Sun, Dongfei ; Zhou, Xiaozhong ; Lei, Ziqiang</creator><creatorcontrib>Miao, Xuan ; Li, Haiqiang ; Wang, Li ; Li, Yanli ; Sun, Dongfei ; Zhou, Xiaozhong ; Lei, Ziqiang</creatorcontrib><description>Transition metal sulfides as the most prominent candidates with high theoretical capacities; however, serious agglomeration and enormous volumetric variation limit its application in lithium-ion batteries. Herein, a chemical blowing strategy for the synthesis of FeS nanoparticles encapsulated into 3D porous carbon framework via chemical vapor deposition method and subsequent sulfidation process. In the constructed architecture, the monodispersed FeS nanoparticles are fully encapsulated in graphitic carbon, simultaneously, confined in 3D architecture composed of 2D graphitic carbon nanosheets. The unique architecture provides a facilitated transport pathway, enhances electron conductivity and buffers the volumetric expansion of FeS. Consequently, the composite delivers a high reversible capacity of 1084.2 mAh g
−1
at 0.1 A g
−1
, excellent rate capability (723.5 mAh g
−1
at 1 A g
−1
), and outstanding cycling stability (a specific capacity of 848.3 mAh g
−1
without decay is achieved at 0.5 A g
−1
). Therefore, the present work suggests that the novel design of 3D FeS/C material provides a strategy for achieving high-performance anodes in lithium-ion batteries.
Graphic abstract
Uniformly monodispersed FeS nanoparticles confined in 3D interconnected carbon network was synthesized by using chemical vapor deposition method and subsequent sulfidation process. The hybrid electrode exhibits excellent performance with a reversible capacity of 1084.2 mAh g
−1
at 0.1 A g
−1
as well as outstanding cycling stability performance of 848.3 mAh g
−1
at 0.5 A g
−1
after 170 cycles.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-020-04843-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anodes ; Architecture ; Batteries ; Boron nitride ; Carbon ; Characterization and Evaluation of Materials ; Chemical synthesis ; Chemical vapor deposition ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Electric properties ; Electron conductivity ; Encapsulation ; Energy Materials ; Lithium ; Lithium-ion batteries ; Materials Science ; Metal sulfides ; Nanoparticles ; Nanosheets ; Polymer Sciences ; Rechargeable batteries ; Solid Mechanics ; Stability ; Sulfidation ; Sulfides ; Transition metals</subject><ispartof>Journal of materials science, 2020-09, Vol.55 (26), p.12139-12150</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-8dd62485283426fab34e3abd8a8c43384231a61c5f48db30174a644cadd87d8d3</citedby><cites>FETCH-LOGICAL-c459t-8dd62485283426fab34e3abd8a8c43384231a61c5f48db30174a644cadd87d8d3</cites><orcidid>0000-0002-1115-4721</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-020-04843-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-020-04843-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Miao, Xuan</creatorcontrib><creatorcontrib>Li, Haiqiang</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Li, Yanli</creatorcontrib><creatorcontrib>Sun, Dongfei</creatorcontrib><creatorcontrib>Zhou, Xiaozhong</creatorcontrib><creatorcontrib>Lei, Ziqiang</creatorcontrib><title>Monodispersed FeS nanoparticles confined in 3D interconnected carbon nanosheets network as an anode for high-performance lithium-ion batteries</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Transition metal sulfides as the most prominent candidates with high theoretical capacities; however, serious agglomeration and enormous volumetric variation limit its application in lithium-ion batteries. Herein, a chemical blowing strategy for the synthesis of FeS nanoparticles encapsulated into 3D porous carbon framework via chemical vapor deposition method and subsequent sulfidation process. In the constructed architecture, the monodispersed FeS nanoparticles are fully encapsulated in graphitic carbon, simultaneously, confined in 3D architecture composed of 2D graphitic carbon nanosheets. The unique architecture provides a facilitated transport pathway, enhances electron conductivity and buffers the volumetric expansion of FeS. Consequently, the composite delivers a high reversible capacity of 1084.2 mAh g
−1
at 0.1 A g
−1
, excellent rate capability (723.5 mAh g
−1
at 1 A g
−1
), and outstanding cycling stability (a specific capacity of 848.3 mAh g
−1
without decay is achieved at 0.5 A g
−1
). Therefore, the present work suggests that the novel design of 3D FeS/C material provides a strategy for achieving high-performance anodes in lithium-ion batteries.
Graphic abstract
Uniformly monodispersed FeS nanoparticles confined in 3D interconnected carbon network was synthesized by using chemical vapor deposition method and subsequent sulfidation process. The hybrid electrode exhibits excellent performance with a reversible capacity of 1084.2 mAh g
−1
at 0.1 A g
−1
as well as outstanding cycling stability performance of 848.3 mAh g
−1
at 0.5 A g
−1
after 170 cycles.</description><subject>Anodes</subject><subject>Architecture</subject><subject>Batteries</subject><subject>Boron nitride</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical synthesis</subject><subject>Chemical vapor deposition</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Electric properties</subject><subject>Electron conductivity</subject><subject>Encapsulation</subject><subject>Energy Materials</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Materials Science</subject><subject>Metal sulfides</subject><subject>Nanoparticles</subject><subject>Nanosheets</subject><subject>Polymer Sciences</subject><subject>Rechargeable batteries</subject><subject>Solid Mechanics</subject><subject>Stability</subject><subject>Sulfidation</subject><subject>Sulfides</subject><subject>Transition metals</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kd9qVDEQxoNYcK19Aa8CXnmRNv_OOdnLUq0WKoJtr0NOMmc3dU-yJlmqL-EzO-0KZUEkIRMmv2-GzEfIW8FPBefDWRXcdIpxyRnXRiu2fEEWohsU04arl2TBuZRM6l68Iq9rveecd4MUC_L7S045xLqFUiHQS7ihyaW8daVFv4FKfU5TTPgUE1Uf8GxQMJfAN0x6V8acniR1DdAqTdAecvlOXaUu4c4B6JQLXcfVmmEXvM8ueaCb2NZxN7OI-tE1LBuhviFHk9tUOPkbj8nd5cfbi8_s-uunq4vza-Z1t2zMhNBLbTpplJb95EalQbkxGGe8VspoqYTrhe8mbcKouBi067X2LgQzBBPUMXm3r7st-ccOarP3eVcStrRSi54rsxTqmVq5DdiYptyK83Os3p73cuj0gGNF6vQfFK4Ac8RRwRQxfyB4fyBApsHPtnK7Wu3VzbdDVu5ZX3KtBSa7LXF25ZcV3D5ab_fWW7TePllvlyhSe1FFOK2gPP_uP6o_ZtGxPQ</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Miao, Xuan</creator><creator>Li, Haiqiang</creator><creator>Wang, Li</creator><creator>Li, Yanli</creator><creator>Sun, Dongfei</creator><creator>Zhou, Xiaozhong</creator><creator>Lei, Ziqiang</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-1115-4721</orcidid></search><sort><creationdate>20200901</creationdate><title>Monodispersed FeS nanoparticles confined in 3D interconnected carbon nanosheets network as an anode for high-performance lithium-ion batteries</title><author>Miao, Xuan ; Li, Haiqiang ; Wang, Li ; Li, Yanli ; Sun, Dongfei ; Zhou, Xiaozhong ; Lei, Ziqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-8dd62485283426fab34e3abd8a8c43384231a61c5f48db30174a644cadd87d8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Architecture</topic><topic>Batteries</topic><topic>Boron nitride</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical synthesis</topic><topic>Chemical vapor deposition</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Electric properties</topic><topic>Electron conductivity</topic><topic>Encapsulation</topic><topic>Energy Materials</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Materials Science</topic><topic>Metal sulfides</topic><topic>Nanoparticles</topic><topic>Nanosheets</topic><topic>Polymer Sciences</topic><topic>Rechargeable batteries</topic><topic>Solid Mechanics</topic><topic>Stability</topic><topic>Sulfidation</topic><topic>Sulfides</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Xuan</creatorcontrib><creatorcontrib>Li, Haiqiang</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Li, Yanli</creatorcontrib><creatorcontrib>Sun, Dongfei</creatorcontrib><creatorcontrib>Zhou, Xiaozhong</creatorcontrib><creatorcontrib>Lei, Ziqiang</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Xuan</au><au>Li, Haiqiang</au><au>Wang, Li</au><au>Li, Yanli</au><au>Sun, Dongfei</au><au>Zhou, Xiaozhong</au><au>Lei, Ziqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monodispersed FeS nanoparticles confined in 3D interconnected carbon nanosheets network as an anode for high-performance lithium-ion batteries</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>55</volume><issue>26</issue><spage>12139</spage><epage>12150</epage><pages>12139-12150</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Transition metal sulfides as the most prominent candidates with high theoretical capacities; however, serious agglomeration and enormous volumetric variation limit its application in lithium-ion batteries. Herein, a chemical blowing strategy for the synthesis of FeS nanoparticles encapsulated into 3D porous carbon framework via chemical vapor deposition method and subsequent sulfidation process. In the constructed architecture, the monodispersed FeS nanoparticles are fully encapsulated in graphitic carbon, simultaneously, confined in 3D architecture composed of 2D graphitic carbon nanosheets. The unique architecture provides a facilitated transport pathway, enhances electron conductivity and buffers the volumetric expansion of FeS. Consequently, the composite delivers a high reversible capacity of 1084.2 mAh g
−1
at 0.1 A g
−1
, excellent rate capability (723.5 mAh g
−1
at 1 A g
−1
), and outstanding cycling stability (a specific capacity of 848.3 mAh g
−1
without decay is achieved at 0.5 A g
−1
). Therefore, the present work suggests that the novel design of 3D FeS/C material provides a strategy for achieving high-performance anodes in lithium-ion batteries.
Graphic abstract
Uniformly monodispersed FeS nanoparticles confined in 3D interconnected carbon network was synthesized by using chemical vapor deposition method and subsequent sulfidation process. The hybrid electrode exhibits excellent performance with a reversible capacity of 1084.2 mAh g
−1
at 0.1 A g
−1
as well as outstanding cycling stability performance of 848.3 mAh g
−1
at 0.5 A g
−1
after 170 cycles.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-020-04843-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1115-4721</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2020-09, Vol.55 (26), p.12139-12150 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2416038913 |
source | Springer Nature - Complete Springer Journals |
subjects | Anodes Architecture Batteries Boron nitride Carbon Characterization and Evaluation of Materials Chemical synthesis Chemical vapor deposition Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Electric properties Electron conductivity Encapsulation Energy Materials Lithium Lithium-ion batteries Materials Science Metal sulfides Nanoparticles Nanosheets Polymer Sciences Rechargeable batteries Solid Mechanics Stability Sulfidation Sulfides Transition metals |
title | Monodispersed FeS nanoparticles confined in 3D interconnected carbon nanosheets network as an anode for high-performance lithium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monodispersed%20FeS%20nanoparticles%20confined%20in%203D%20interconnected%20carbon%20nanosheets%20network%20as%20an%20anode%20for%20high-performance%20lithium-ion%20batteries&rft.jtitle=Journal%20of%20materials%20science&rft.au=Miao,%20Xuan&rft.date=2020-09-01&rft.volume=55&rft.issue=26&rft.spage=12139&rft.epage=12150&rft.pages=12139-12150&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-020-04843-9&rft_dat=%3Cgale_proqu%3EA627547002%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416038913&rft_id=info:pmid/&rft_galeid=A627547002&rfr_iscdi=true |