Evaluation of the Performance of the Drag Force Model in Predicting Droplet Evaporation for R134a Single Droplet and Spray Characteristics for R134a Flashing Spray
Drag force plays an important role in determining the momentum, heat and mass transfer of droplets in a flashing spray. This paper conducts a comparative study to examine the performance of drag force models in predicting the evolution of droplet evaporation for R134a single droplet and spray charac...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2019-12, Vol.12 (24), p.4618 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 4618 |
container_title | Energies (Basel) |
container_volume | 12 |
creator | Zhou, Zhi-Fu Zhu, Dong-Qing Lu, Guan-Yu Chen, Bin Wu, Wei-Tao Li, Yu-Bai |
description | Drag force plays an important role in determining the momentum, heat and mass transfer of droplets in a flashing spray. This paper conducts a comparative study to examine the performance of drag force models in predicting the evolution of droplet evaporation for R134a single droplet and spray characteristics for its flashing spray. The study starts from single moving R134a droplet vaporizing in atomispheric environment, to a fully turbulent, flashing spray caused by an accidental release of high-pressure R134a liquid in the form of a straight-tube nozzle, using in-house developed code and a modified sprayFoam solver in OpenFOAM, respectively. The effect of the nozzle diameter on the spray characteristics of R134a two-phase flashing spray is also examined. The results indicate that most of the drag force models have little effect on droplet evporation in both single isolated droplet modelling and fully two-phase flashing spray simulation. However, the Khan–Richardson model contributes to different results. In particular, it predicts a much different profile of the droplet diameter distribution and a much lower droplet temperature in the radial distance. The nozzle diameter has a significant impact on the flashing spray. A smaller diameter nozzle leads to more internse explosive atomization, shorter penetration distance, lower droplet diameter and velocity, and a faster temperature decrease. |
doi_str_mv | 10.3390/en12244618 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2415942447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415942447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-25fb3ec90f51a56d6d8355a0666747ae0fa6cfc5daad3d60afa30f01f037d7b13</originalsourceid><addsrcrecordid>eNpNkdtKAzEQhoMoWLQ3PkHAO2E12dnNdi-ltipULFavl2kO7ZbtZk1Soc_ji5paD52bDH--fAMZQi44uwYo2Y1ueZpmmeCDI9LjZSkSzgo4PuhPSd_7FYsFwAGgRz5HH9hsMNS2pdbQsNR0qp2xbo2t1L_RncMFHVsXkyerdEPrlk6dVrUMdbuI17ZrdKDR1Vm3l0UFfeGQIZ1FpNF_ELaKzjqHWzpcokMZtKt9qKU_eDJu0C935m_wnJwYbLzu_5xn5G08eh0-JJPn-8fh7SSRaZmHJM3NHLQsmck55kIJNYA8RyaEKLICNTMopJG5QlSgBEODwAzjhkGhijmHM3K593bOvm-0D9XKblwbR1ZpxvMyi59bROpqT0lnvXfaVJ2r1-i2FWfVbg_V_x7gC9eHe4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415942447</pqid></control><display><type>article</type><title>Evaluation of the Performance of the Drag Force Model in Predicting Droplet Evaporation for R134a Single Droplet and Spray Characteristics for R134a Flashing Spray</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhou, Zhi-Fu ; Zhu, Dong-Qing ; Lu, Guan-Yu ; Chen, Bin ; Wu, Wei-Tao ; Li, Yu-Bai</creator><creatorcontrib>Zhou, Zhi-Fu ; Zhu, Dong-Qing ; Lu, Guan-Yu ; Chen, Bin ; Wu, Wei-Tao ; Li, Yu-Bai</creatorcontrib><description>Drag force plays an important role in determining the momentum, heat and mass transfer of droplets in a flashing spray. This paper conducts a comparative study to examine the performance of drag force models in predicting the evolution of droplet evaporation for R134a single droplet and spray characteristics for its flashing spray. The study starts from single moving R134a droplet vaporizing in atomispheric environment, to a fully turbulent, flashing spray caused by an accidental release of high-pressure R134a liquid in the form of a straight-tube nozzle, using in-house developed code and a modified sprayFoam solver in OpenFOAM, respectively. The effect of the nozzle diameter on the spray characteristics of R134a two-phase flashing spray is also examined. The results indicate that most of the drag force models have little effect on droplet evporation in both single isolated droplet modelling and fully two-phase flashing spray simulation. However, the Khan–Richardson model contributes to different results. In particular, it predicts a much different profile of the droplet diameter distribution and a much lower droplet temperature in the radial distance. The nozzle diameter has a significant impact on the flashing spray. A smaller diameter nozzle leads to more internse explosive atomization, shorter penetration distance, lower droplet diameter and velocity, and a faster temperature decrease.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en12244618</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accidental release ; Atomizing ; Comparative studies ; Computer simulation ; Cooling ; Droplets ; Evaporation ; Flashing ; Gases ; Heat transfer ; Lasers ; Nozzles ; Reynolds number ; Spray characteristics ; Temperature ; Vaporization ; Velocity</subject><ispartof>Energies (Basel), 2019-12, Vol.12 (24), p.4618</ispartof><rights>2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-25fb3ec90f51a56d6d8355a0666747ae0fa6cfc5daad3d60afa30f01f037d7b13</citedby><cites>FETCH-LOGICAL-c295t-25fb3ec90f51a56d6d8355a0666747ae0fa6cfc5daad3d60afa30f01f037d7b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhou, Zhi-Fu</creatorcontrib><creatorcontrib>Zhu, Dong-Qing</creatorcontrib><creatorcontrib>Lu, Guan-Yu</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Wu, Wei-Tao</creatorcontrib><creatorcontrib>Li, Yu-Bai</creatorcontrib><title>Evaluation of the Performance of the Drag Force Model in Predicting Droplet Evaporation for R134a Single Droplet and Spray Characteristics for R134a Flashing Spray</title><title>Energies (Basel)</title><description>Drag force plays an important role in determining the momentum, heat and mass transfer of droplets in a flashing spray. This paper conducts a comparative study to examine the performance of drag force models in predicting the evolution of droplet evaporation for R134a single droplet and spray characteristics for its flashing spray. The study starts from single moving R134a droplet vaporizing in atomispheric environment, to a fully turbulent, flashing spray caused by an accidental release of high-pressure R134a liquid in the form of a straight-tube nozzle, using in-house developed code and a modified sprayFoam solver in OpenFOAM, respectively. The effect of the nozzle diameter on the spray characteristics of R134a two-phase flashing spray is also examined. The results indicate that most of the drag force models have little effect on droplet evporation in both single isolated droplet modelling and fully two-phase flashing spray simulation. However, the Khan–Richardson model contributes to different results. In particular, it predicts a much different profile of the droplet diameter distribution and a much lower droplet temperature in the radial distance. The nozzle diameter has a significant impact on the flashing spray. A smaller diameter nozzle leads to more internse explosive atomization, shorter penetration distance, lower droplet diameter and velocity, and a faster temperature decrease.</description><subject>Accidental release</subject><subject>Atomizing</subject><subject>Comparative studies</subject><subject>Computer simulation</subject><subject>Cooling</subject><subject>Droplets</subject><subject>Evaporation</subject><subject>Flashing</subject><subject>Gases</subject><subject>Heat transfer</subject><subject>Lasers</subject><subject>Nozzles</subject><subject>Reynolds number</subject><subject>Spray characteristics</subject><subject>Temperature</subject><subject>Vaporization</subject><subject>Velocity</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkdtKAzEQhoMoWLQ3PkHAO2E12dnNdi-ltipULFavl2kO7ZbtZk1Soc_ji5paD52bDH--fAMZQi44uwYo2Y1ueZpmmeCDI9LjZSkSzgo4PuhPSd_7FYsFwAGgRz5HH9hsMNS2pdbQsNR0qp2xbo2t1L_RncMFHVsXkyerdEPrlk6dVrUMdbuI17ZrdKDR1Vm3l0UFfeGQIZ1FpNF_ELaKzjqHWzpcokMZtKt9qKU_eDJu0C935m_wnJwYbLzu_5xn5G08eh0-JJPn-8fh7SSRaZmHJM3NHLQsmck55kIJNYA8RyaEKLICNTMopJG5QlSgBEODwAzjhkGhijmHM3K593bOvm-0D9XKblwbR1ZpxvMyi59bROpqT0lnvXfaVJ2r1-i2FWfVbg_V_x7gC9eHe4w</recordid><startdate>20191205</startdate><enddate>20191205</enddate><creator>Zhou, Zhi-Fu</creator><creator>Zhu, Dong-Qing</creator><creator>Lu, Guan-Yu</creator><creator>Chen, Bin</creator><creator>Wu, Wei-Tao</creator><creator>Li, Yu-Bai</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20191205</creationdate><title>Evaluation of the Performance of the Drag Force Model in Predicting Droplet Evaporation for R134a Single Droplet and Spray Characteristics for R134a Flashing Spray</title><author>Zhou, Zhi-Fu ; Zhu, Dong-Qing ; Lu, Guan-Yu ; Chen, Bin ; Wu, Wei-Tao ; Li, Yu-Bai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-25fb3ec90f51a56d6d8355a0666747ae0fa6cfc5daad3d60afa30f01f037d7b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accidental release</topic><topic>Atomizing</topic><topic>Comparative studies</topic><topic>Computer simulation</topic><topic>Cooling</topic><topic>Droplets</topic><topic>Evaporation</topic><topic>Flashing</topic><topic>Gases</topic><topic>Heat transfer</topic><topic>Lasers</topic><topic>Nozzles</topic><topic>Reynolds number</topic><topic>Spray characteristics</topic><topic>Temperature</topic><topic>Vaporization</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhi-Fu</creatorcontrib><creatorcontrib>Zhu, Dong-Qing</creatorcontrib><creatorcontrib>Lu, Guan-Yu</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Wu, Wei-Tao</creatorcontrib><creatorcontrib>Li, Yu-Bai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Zhi-Fu</au><au>Zhu, Dong-Qing</au><au>Lu, Guan-Yu</au><au>Chen, Bin</au><au>Wu, Wei-Tao</au><au>Li, Yu-Bai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of the Performance of the Drag Force Model in Predicting Droplet Evaporation for R134a Single Droplet and Spray Characteristics for R134a Flashing Spray</atitle><jtitle>Energies (Basel)</jtitle><date>2019-12-05</date><risdate>2019</risdate><volume>12</volume><issue>24</issue><spage>4618</spage><pages>4618-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Drag force plays an important role in determining the momentum, heat and mass transfer of droplets in a flashing spray. This paper conducts a comparative study to examine the performance of drag force models in predicting the evolution of droplet evaporation for R134a single droplet and spray characteristics for its flashing spray. The study starts from single moving R134a droplet vaporizing in atomispheric environment, to a fully turbulent, flashing spray caused by an accidental release of high-pressure R134a liquid in the form of a straight-tube nozzle, using in-house developed code and a modified sprayFoam solver in OpenFOAM, respectively. The effect of the nozzle diameter on the spray characteristics of R134a two-phase flashing spray is also examined. The results indicate that most of the drag force models have little effect on droplet evporation in both single isolated droplet modelling and fully two-phase flashing spray simulation. However, the Khan–Richardson model contributes to different results. In particular, it predicts a much different profile of the droplet diameter distribution and a much lower droplet temperature in the radial distance. The nozzle diameter has a significant impact on the flashing spray. A smaller diameter nozzle leads to more internse explosive atomization, shorter penetration distance, lower droplet diameter and velocity, and a faster temperature decrease.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en12244618</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2019-12, Vol.12 (24), p.4618 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_proquest_journals_2415942447 |
source | MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accidental release Atomizing Comparative studies Computer simulation Cooling Droplets Evaporation Flashing Gases Heat transfer Lasers Nozzles Reynolds number Spray characteristics Temperature Vaporization Velocity |
title | Evaluation of the Performance of the Drag Force Model in Predicting Droplet Evaporation for R134a Single Droplet and Spray Characteristics for R134a Flashing Spray |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A13%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20the%20Performance%20of%20the%20Drag%20Force%20Model%20in%20Predicting%20Droplet%20Evaporation%20for%20R134a%20Single%20Droplet%20and%20Spray%20Characteristics%20for%20R134a%20Flashing%20Spray&rft.jtitle=Energies%20(Basel)&rft.au=Zhou,%20Zhi-Fu&rft.date=2019-12-05&rft.volume=12&rft.issue=24&rft.spage=4618&rft.pages=4618-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en12244618&rft_dat=%3Cproquest_cross%3E2415942447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415942447&rft_id=info:pmid/&rfr_iscdi=true |