Study of the ionization efficiency for nuclear recoils in pure crystals
We study the basic integral equation in Lindhard's theory describing the energy given to atomic motion by nuclear recoils in a pure material when the atomic binding energy is taken into account. The numerical solution, which depends only on the slope of the velocity-proportional electronic stop...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2020-05, Vol.101 (10), p.1, Article 102001 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 1 |
container_title | Physical review. D |
container_volume | 101 |
creator | Sarkis, Y. Aguilar-Arevalo, Alexis D’Olivo, Juan Carlos |
description | We study the basic integral equation in Lindhard's theory describing the energy given to atomic motion by nuclear recoils in a pure material when the atomic binding energy is taken into account. The numerical solution, which depends only on the slope of the velocity-proportional electronic stopping power and the binding energy, leads to an estimation of the ionization efficiency which is in good agreement with the available experimental measurements for Si and Ge. In this model, the quenching factor for nuclear recoils features a cutoff at an energy equal to twice the assumed binding energy. We argue that the model is a reasonable approximation for Ge even for energies close to the cutoff, while for Si is valid up to recoil energies greater than ∼ 500 eV. |
doi_str_mv | 10.1103/PhysRevD.101.102001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2415855380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415855380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-dbb853b19823e070c5bf283ce9f5098de063562785f4525b78d721f304b2764f3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouOj-Ai8Bz11nkqZJj7LqKiwofpxDmyZslrVZk1aov97IqofheRleZuAh5AJhgQj86mkzpWf7ebNAwDwMAI_IjJUSCgBWH_9nhFMyT2kLOVZQS8QZWb0MYzfR4OiwsdSH3n81Qwa1znnjbW8m6kKk_Wh2tok0WhP8LlHf0_0YLTVxSkOzS-fkxGXY-S_PyNvd7evyvlg_rh6W1-vCcMmGomtbJXiLtWLcggQjWscUN7Z2AmrVWai4qJhUwpWCiVaqTjJ0HMqWyap0_IxcHu7uY_gYbRr0Noyxzy81K1EoIbiC3OKHlokhpWid3kf_3sRJI-gfafpPWl6gPkjj34FqYB4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415855380</pqid></control><display><type>article</type><title>Study of the ionization efficiency for nuclear recoils in pure crystals</title><source>American Physical Society Journals</source><creator>Sarkis, Y. ; Aguilar-Arevalo, Alexis ; D’Olivo, Juan Carlos</creator><creatorcontrib>Sarkis, Y. ; Aguilar-Arevalo, Alexis ; D’Olivo, Juan Carlos</creatorcontrib><description>We study the basic integral equation in Lindhard's theory describing the energy given to atomic motion by nuclear recoils in a pure material when the atomic binding energy is taken into account. The numerical solution, which depends only on the slope of the velocity-proportional electronic stopping power and the binding energy, leads to an estimation of the ionization efficiency which is in good agreement with the available experimental measurements for Si and Ge. In this model, the quenching factor for nuclear recoils features a cutoff at an energy equal to twice the assumed binding energy. We argue that the model is a reasonable approximation for Ge even for energies close to the cutoff, while for Si is valid up to recoil energies greater than ∼ 500 eV.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.101.102001</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Binding energy ; Germanium ; Heat treating ; Integral equations ; Ionization ; Ions ; Recoil ; Silicon ; Stopping power</subject><ispartof>Physical review. D, 2020-05, Vol.101 (10), p.1, Article 102001</ispartof><rights>Copyright American Physical Society May 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-dbb853b19823e070c5bf283ce9f5098de063562785f4525b78d721f304b2764f3</citedby><cites>FETCH-LOGICAL-c372t-dbb853b19823e070c5bf283ce9f5098de063562785f4525b78d721f304b2764f3</cites><orcidid>0000-0003-4992-8419 ; 0000-0001-9279-3375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Sarkis, Y.</creatorcontrib><creatorcontrib>Aguilar-Arevalo, Alexis</creatorcontrib><creatorcontrib>D’Olivo, Juan Carlos</creatorcontrib><title>Study of the ionization efficiency for nuclear recoils in pure crystals</title><title>Physical review. D</title><description>We study the basic integral equation in Lindhard's theory describing the energy given to atomic motion by nuclear recoils in a pure material when the atomic binding energy is taken into account. The numerical solution, which depends only on the slope of the velocity-proportional electronic stopping power and the binding energy, leads to an estimation of the ionization efficiency which is in good agreement with the available experimental measurements for Si and Ge. In this model, the quenching factor for nuclear recoils features a cutoff at an energy equal to twice the assumed binding energy. We argue that the model is a reasonable approximation for Ge even for energies close to the cutoff, while for Si is valid up to recoil energies greater than ∼ 500 eV.</description><subject>Binding energy</subject><subject>Germanium</subject><subject>Heat treating</subject><subject>Integral equations</subject><subject>Ionization</subject><subject>Ions</subject><subject>Recoil</subject><subject>Silicon</subject><subject>Stopping power</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouOj-Ai8Bz11nkqZJj7LqKiwofpxDmyZslrVZk1aov97IqofheRleZuAh5AJhgQj86mkzpWf7ebNAwDwMAI_IjJUSCgBWH_9nhFMyT2kLOVZQS8QZWb0MYzfR4OiwsdSH3n81Qwa1znnjbW8m6kKk_Wh2tok0WhP8LlHf0_0YLTVxSkOzS-fkxGXY-S_PyNvd7evyvlg_rh6W1-vCcMmGomtbJXiLtWLcggQjWscUN7Z2AmrVWai4qJhUwpWCiVaqTjJ0HMqWyap0_IxcHu7uY_gYbRr0Noyxzy81K1EoIbiC3OKHlokhpWid3kf_3sRJI-gfafpPWl6gPkjj34FqYB4</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Sarkis, Y.</creator><creator>Aguilar-Arevalo, Alexis</creator><creator>D’Olivo, Juan Carlos</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4992-8419</orcidid><orcidid>https://orcid.org/0000-0001-9279-3375</orcidid></search><sort><creationdate>20200515</creationdate><title>Study of the ionization efficiency for nuclear recoils in pure crystals</title><author>Sarkis, Y. ; Aguilar-Arevalo, Alexis ; D’Olivo, Juan Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-dbb853b19823e070c5bf283ce9f5098de063562785f4525b78d721f304b2764f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Binding energy</topic><topic>Germanium</topic><topic>Heat treating</topic><topic>Integral equations</topic><topic>Ionization</topic><topic>Ions</topic><topic>Recoil</topic><topic>Silicon</topic><topic>Stopping power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkis, Y.</creatorcontrib><creatorcontrib>Aguilar-Arevalo, Alexis</creatorcontrib><creatorcontrib>D’Olivo, Juan Carlos</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarkis, Y.</au><au>Aguilar-Arevalo, Alexis</au><au>D’Olivo, Juan Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of the ionization efficiency for nuclear recoils in pure crystals</atitle><jtitle>Physical review. D</jtitle><date>2020-05-15</date><risdate>2020</risdate><volume>101</volume><issue>10</issue><spage>1</spage><pages>1-</pages><artnum>102001</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We study the basic integral equation in Lindhard's theory describing the energy given to atomic motion by nuclear recoils in a pure material when the atomic binding energy is taken into account. The numerical solution, which depends only on the slope of the velocity-proportional electronic stopping power and the binding energy, leads to an estimation of the ionization efficiency which is in good agreement with the available experimental measurements for Si and Ge. In this model, the quenching factor for nuclear recoils features a cutoff at an energy equal to twice the assumed binding energy. We argue that the model is a reasonable approximation for Ge even for energies close to the cutoff, while for Si is valid up to recoil energies greater than ∼ 500 eV.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.101.102001</doi><orcidid>https://orcid.org/0000-0003-4992-8419</orcidid><orcidid>https://orcid.org/0000-0001-9279-3375</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2020-05, Vol.101 (10), p.1, Article 102001 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2415855380 |
source | American Physical Society Journals |
subjects | Binding energy Germanium Heat treating Integral equations Ionization Ions Recoil Silicon Stopping power |
title | Study of the ionization efficiency for nuclear recoils in pure crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T11%3A42%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20the%20ionization%20efficiency%20for%20nuclear%20recoils%20in%20pure%20crystals&rft.jtitle=Physical%20review.%20D&rft.au=Sarkis,%20Y.&rft.date=2020-05-15&rft.volume=101&rft.issue=10&rft.spage=1&rft.pages=1-&rft.artnum=102001&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.101.102001&rft_dat=%3Cproquest_cross%3E2415855380%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415855380&rft_id=info:pmid/&rfr_iscdi=true |