Study of the ionization efficiency for nuclear recoils in pure crystals

We study the basic integral equation in Lindhard's theory describing the energy given to atomic motion by nuclear recoils in a pure material when the atomic binding energy is taken into account. The numerical solution, which depends only on the slope of the velocity-proportional electronic stop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2020-05, Vol.101 (10), p.1, Article 102001
Hauptverfasser: Sarkis, Y., Aguilar-Arevalo, Alexis, D’Olivo, Juan Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 1
container_title Physical review. D
container_volume 101
creator Sarkis, Y.
Aguilar-Arevalo, Alexis
D’Olivo, Juan Carlos
description We study the basic integral equation in Lindhard's theory describing the energy given to atomic motion by nuclear recoils in a pure material when the atomic binding energy is taken into account. The numerical solution, which depends only on the slope of the velocity-proportional electronic stopping power and the binding energy, leads to an estimation of the ionization efficiency which is in good agreement with the available experimental measurements for Si and Ge. In this model, the quenching factor for nuclear recoils features a cutoff at an energy equal to twice the assumed binding energy. We argue that the model is a reasonable approximation for Ge even for energies close to the cutoff, while for Si is valid up to recoil energies greater than ∼ 500 eV.
doi_str_mv 10.1103/PhysRevD.101.102001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2415855380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415855380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-dbb853b19823e070c5bf283ce9f5098de063562785f4525b78d721f304b2764f3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouOj-Ai8Bz11nkqZJj7LqKiwofpxDmyZslrVZk1aov97IqofheRleZuAh5AJhgQj86mkzpWf7ebNAwDwMAI_IjJUSCgBWH_9nhFMyT2kLOVZQS8QZWb0MYzfR4OiwsdSH3n81Qwa1znnjbW8m6kKk_Wh2tok0WhP8LlHf0_0YLTVxSkOzS-fkxGXY-S_PyNvd7evyvlg_rh6W1-vCcMmGomtbJXiLtWLcggQjWscUN7Z2AmrVWai4qJhUwpWCiVaqTjJ0HMqWyap0_IxcHu7uY_gYbRr0Noyxzy81K1EoIbiC3OKHlokhpWid3kf_3sRJI-gfafpPWl6gPkjj34FqYB4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415855380</pqid></control><display><type>article</type><title>Study of the ionization efficiency for nuclear recoils in pure crystals</title><source>American Physical Society Journals</source><creator>Sarkis, Y. ; Aguilar-Arevalo, Alexis ; D’Olivo, Juan Carlos</creator><creatorcontrib>Sarkis, Y. ; Aguilar-Arevalo, Alexis ; D’Olivo, Juan Carlos</creatorcontrib><description>We study the basic integral equation in Lindhard's theory describing the energy given to atomic motion by nuclear recoils in a pure material when the atomic binding energy is taken into account. The numerical solution, which depends only on the slope of the velocity-proportional electronic stopping power and the binding energy, leads to an estimation of the ionization efficiency which is in good agreement with the available experimental measurements for Si and Ge. In this model, the quenching factor for nuclear recoils features a cutoff at an energy equal to twice the assumed binding energy. We argue that the model is a reasonable approximation for Ge even for energies close to the cutoff, while for Si is valid up to recoil energies greater than ∼ 500 eV.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.101.102001</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Binding energy ; Germanium ; Heat treating ; Integral equations ; Ionization ; Ions ; Recoil ; Silicon ; Stopping power</subject><ispartof>Physical review. D, 2020-05, Vol.101 (10), p.1, Article 102001</ispartof><rights>Copyright American Physical Society May 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-dbb853b19823e070c5bf283ce9f5098de063562785f4525b78d721f304b2764f3</citedby><cites>FETCH-LOGICAL-c372t-dbb853b19823e070c5bf283ce9f5098de063562785f4525b78d721f304b2764f3</cites><orcidid>0000-0003-4992-8419 ; 0000-0001-9279-3375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Sarkis, Y.</creatorcontrib><creatorcontrib>Aguilar-Arevalo, Alexis</creatorcontrib><creatorcontrib>D’Olivo, Juan Carlos</creatorcontrib><title>Study of the ionization efficiency for nuclear recoils in pure crystals</title><title>Physical review. D</title><description>We study the basic integral equation in Lindhard's theory describing the energy given to atomic motion by nuclear recoils in a pure material when the atomic binding energy is taken into account. The numerical solution, which depends only on the slope of the velocity-proportional electronic stopping power and the binding energy, leads to an estimation of the ionization efficiency which is in good agreement with the available experimental measurements for Si and Ge. In this model, the quenching factor for nuclear recoils features a cutoff at an energy equal to twice the assumed binding energy. We argue that the model is a reasonable approximation for Ge even for energies close to the cutoff, while for Si is valid up to recoil energies greater than ∼ 500 eV.</description><subject>Binding energy</subject><subject>Germanium</subject><subject>Heat treating</subject><subject>Integral equations</subject><subject>Ionization</subject><subject>Ions</subject><subject>Recoil</subject><subject>Silicon</subject><subject>Stopping power</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouOj-Ai8Bz11nkqZJj7LqKiwofpxDmyZslrVZk1aov97IqofheRleZuAh5AJhgQj86mkzpWf7ebNAwDwMAI_IjJUSCgBWH_9nhFMyT2kLOVZQS8QZWb0MYzfR4OiwsdSH3n81Qwa1znnjbW8m6kKk_Wh2tok0WhP8LlHf0_0YLTVxSkOzS-fkxGXY-S_PyNvd7evyvlg_rh6W1-vCcMmGomtbJXiLtWLcggQjWscUN7Z2AmrVWai4qJhUwpWCiVaqTjJ0HMqWyap0_IxcHu7uY_gYbRr0Noyxzy81K1EoIbiC3OKHlokhpWid3kf_3sRJI-gfafpPWl6gPkjj34FqYB4</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Sarkis, Y.</creator><creator>Aguilar-Arevalo, Alexis</creator><creator>D’Olivo, Juan Carlos</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4992-8419</orcidid><orcidid>https://orcid.org/0000-0001-9279-3375</orcidid></search><sort><creationdate>20200515</creationdate><title>Study of the ionization efficiency for nuclear recoils in pure crystals</title><author>Sarkis, Y. ; Aguilar-Arevalo, Alexis ; D’Olivo, Juan Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-dbb853b19823e070c5bf283ce9f5098de063562785f4525b78d721f304b2764f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Binding energy</topic><topic>Germanium</topic><topic>Heat treating</topic><topic>Integral equations</topic><topic>Ionization</topic><topic>Ions</topic><topic>Recoil</topic><topic>Silicon</topic><topic>Stopping power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkis, Y.</creatorcontrib><creatorcontrib>Aguilar-Arevalo, Alexis</creatorcontrib><creatorcontrib>D’Olivo, Juan Carlos</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarkis, Y.</au><au>Aguilar-Arevalo, Alexis</au><au>D’Olivo, Juan Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of the ionization efficiency for nuclear recoils in pure crystals</atitle><jtitle>Physical review. D</jtitle><date>2020-05-15</date><risdate>2020</risdate><volume>101</volume><issue>10</issue><spage>1</spage><pages>1-</pages><artnum>102001</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We study the basic integral equation in Lindhard's theory describing the energy given to atomic motion by nuclear recoils in a pure material when the atomic binding energy is taken into account. The numerical solution, which depends only on the slope of the velocity-proportional electronic stopping power and the binding energy, leads to an estimation of the ionization efficiency which is in good agreement with the available experimental measurements for Si and Ge. In this model, the quenching factor for nuclear recoils features a cutoff at an energy equal to twice the assumed binding energy. We argue that the model is a reasonable approximation for Ge even for energies close to the cutoff, while for Si is valid up to recoil energies greater than ∼ 500 eV.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.101.102001</doi><orcidid>https://orcid.org/0000-0003-4992-8419</orcidid><orcidid>https://orcid.org/0000-0001-9279-3375</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2020-05, Vol.101 (10), p.1, Article 102001
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2415855380
source American Physical Society Journals
subjects Binding energy
Germanium
Heat treating
Integral equations
Ionization
Ions
Recoil
Silicon
Stopping power
title Study of the ionization efficiency for nuclear recoils in pure crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T11%3A42%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20the%20ionization%20efficiency%20for%20nuclear%20recoils%20in%20pure%20crystals&rft.jtitle=Physical%20review.%20D&rft.au=Sarkis,%20Y.&rft.date=2020-05-15&rft.volume=101&rft.issue=10&rft.spage=1&rft.pages=1-&rft.artnum=102001&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.101.102001&rft_dat=%3Cproquest_cross%3E2415855380%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415855380&rft_id=info:pmid/&rfr_iscdi=true