Kähler currents and null loci

We prove that the non-Kähler locus of a nef and big class on a compact complex manifold bimeromorphic to a Kähler manifold equals its null locus. In particular this gives an analytic proof of a theorem of Nakamaye and Ein–Lazarsfeld–Mustaţă–Nakamaye–Popa. As an application, we show that finite time...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2015-12, Vol.202 (3), p.1167-1198
Hauptverfasser: Collins, Tristan C., Tosatti, Valentino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1198
container_issue 3
container_start_page 1167
container_title Inventiones mathematicae
container_volume 202
creator Collins, Tristan C.
Tosatti, Valentino
description We prove that the non-Kähler locus of a nef and big class on a compact complex manifold bimeromorphic to a Kähler manifold equals its null locus. In particular this gives an analytic proof of a theorem of Nakamaye and Ein–Lazarsfeld–Mustaţă–Nakamaye–Popa. As an application, we show that finite time non-collapsing singularities of the Kähler–Ricci flow on compact Kähler manifolds always form along analytic subvarieties, thus answering a question of Feldman–Ilmanen–Knopf and Campana. We also extend the second author’s results about noncollapsing degenerations of Ricci-flat Kähler metrics on Calabi–Yau manifolds to the nonalgebraic case.
doi_str_mv 10.1007/s00222-015-0585-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2415575001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415575001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-1da31ac8cd29016e147584942341dd2fed6118e705c7fba6b683b8788e4e38f13</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoWEcfwI0UXEfPyaVJljLoKA640XVI01RnqO2YtAvfxzfxxcxQwZWrs_hvh4-Qc4QrBFDXCYAxRgElBaklNQekQMEZRWbUISmyDNQYhGNyktIWIIuKFeTi8fvrrQux9FOMoR9T6fqm7KeuK7vBb07JUeu6FM5-74K83N0-L-_p-mn1sLxZU891NVJsHEfntW-YAawCCiW1MIJxgU3D2tBUiDookF61tavqSvNaK62DCFy3yBfkcu7dxeFjCmm022GKfZ60TKCUSuaPswtnl49DSjG0dhc37y5-WgS7x2BnDDZjsHsM1uQMmzMpe_vXEP-a_w_9AI25XZM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415575001</pqid></control><display><type>article</type><title>Kähler currents and null loci</title><source>SpringerLink Journals - AutoHoldings</source><creator>Collins, Tristan C. ; Tosatti, Valentino</creator><creatorcontrib>Collins, Tristan C. ; Tosatti, Valentino</creatorcontrib><description>We prove that the non-Kähler locus of a nef and big class on a compact complex manifold bimeromorphic to a Kähler manifold equals its null locus. In particular this gives an analytic proof of a theorem of Nakamaye and Ein–Lazarsfeld–Mustaţă–Nakamaye–Popa. As an application, we show that finite time non-collapsing singularities of the Kähler–Ricci flow on compact Kähler manifolds always form along analytic subvarieties, thus answering a question of Feldman–Ilmanen–Knopf and Campana. We also extend the second author’s results about noncollapsing degenerations of Ricci-flat Kähler metrics on Calabi–Yau manifolds to the nonalgebraic case.</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-015-0585-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Loci ; Manifolds ; Mathematics ; Mathematics and Statistics</subject><ispartof>Inventiones mathematicae, 2015-12, Vol.202 (3), p.1167-1198</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-1da31ac8cd29016e147584942341dd2fed6118e705c7fba6b683b8788e4e38f13</citedby><cites>FETCH-LOGICAL-c386t-1da31ac8cd29016e147584942341dd2fed6118e705c7fba6b683b8788e4e38f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00222-015-0585-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00222-015-0585-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Collins, Tristan C.</creatorcontrib><creatorcontrib>Tosatti, Valentino</creatorcontrib><title>Kähler currents and null loci</title><title>Inventiones mathematicae</title><addtitle>Invent. math</addtitle><description>We prove that the non-Kähler locus of a nef and big class on a compact complex manifold bimeromorphic to a Kähler manifold equals its null locus. In particular this gives an analytic proof of a theorem of Nakamaye and Ein–Lazarsfeld–Mustaţă–Nakamaye–Popa. As an application, we show that finite time non-collapsing singularities of the Kähler–Ricci flow on compact Kähler manifolds always form along analytic subvarieties, thus answering a question of Feldman–Ilmanen–Knopf and Campana. We also extend the second author’s results about noncollapsing degenerations of Ricci-flat Kähler metrics on Calabi–Yau manifolds to the nonalgebraic case.</description><subject>Loci</subject><subject>Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtKxDAUhoMoWEcfwI0UXEfPyaVJljLoKA640XVI01RnqO2YtAvfxzfxxcxQwZWrs_hvh4-Qc4QrBFDXCYAxRgElBaklNQekQMEZRWbUISmyDNQYhGNyktIWIIuKFeTi8fvrrQux9FOMoR9T6fqm7KeuK7vBb07JUeu6FM5-74K83N0-L-_p-mn1sLxZU891NVJsHEfntW-YAawCCiW1MIJxgU3D2tBUiDookF61tavqSvNaK62DCFy3yBfkcu7dxeFjCmm022GKfZ60TKCUSuaPswtnl49DSjG0dhc37y5-WgS7x2BnDDZjsHsM1uQMmzMpe_vXEP-a_w_9AI25XZM</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Collins, Tristan C.</creator><creator>Tosatti, Valentino</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20151201</creationdate><title>Kähler currents and null loci</title><author>Collins, Tristan C. ; Tosatti, Valentino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-1da31ac8cd29016e147584942341dd2fed6118e705c7fba6b683b8788e4e38f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Loci</topic><topic>Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collins, Tristan C.</creatorcontrib><creatorcontrib>Tosatti, Valentino</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collins, Tristan C.</au><au>Tosatti, Valentino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kähler currents and null loci</atitle><jtitle>Inventiones mathematicae</jtitle><stitle>Invent. math</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>202</volume><issue>3</issue><spage>1167</spage><epage>1198</epage><pages>1167-1198</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>We prove that the non-Kähler locus of a nef and big class on a compact complex manifold bimeromorphic to a Kähler manifold equals its null locus. In particular this gives an analytic proof of a theorem of Nakamaye and Ein–Lazarsfeld–Mustaţă–Nakamaye–Popa. As an application, we show that finite time non-collapsing singularities of the Kähler–Ricci flow on compact Kähler manifolds always form along analytic subvarieties, thus answering a question of Feldman–Ilmanen–Knopf and Campana. We also extend the second author’s results about noncollapsing degenerations of Ricci-flat Kähler metrics on Calabi–Yau manifolds to the nonalgebraic case.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00222-015-0585-9</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-9910
ispartof Inventiones mathematicae, 2015-12, Vol.202 (3), p.1167-1198
issn 0020-9910
1432-1297
language eng
recordid cdi_proquest_journals_2415575001
source SpringerLink Journals - AutoHoldings
subjects Loci
Manifolds
Mathematics
Mathematics and Statistics
title Kähler currents and null loci
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A07%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=K%C3%A4hler%20currents%20and%20null%20loci&rft.jtitle=Inventiones%20mathematicae&rft.au=Collins,%20Tristan%20C.&rft.date=2015-12-01&rft.volume=202&rft.issue=3&rft.spage=1167&rft.epage=1198&rft.pages=1167-1198&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-015-0585-9&rft_dat=%3Cproquest_cross%3E2415575001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415575001&rft_id=info:pmid/&rfr_iscdi=true