Signalized Intersection Performance with Automated and Conventional Vehicles: A Comparative Study
AbstractSignal control devices have been continuously evolving to make green assignments more responsive to traffic. Recent advances in connected and automated vehicles (CAVs) provide new opportunities to achieve higher performance levels for signalized intersections through an increased coordinatio...
Gespeichert in:
Veröffentlicht in: | Journal of transportation engineering, Part A Part A, 2020-09, Vol.146 (9) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Journal of transportation engineering, Part A |
container_volume | 146 |
creator | Pourmehrab, Mahmoud Emami, Patrick Martin-Gasulla, Marilo Wilson, Jabari Elefteriadou, Lily Ranka, Sanjay |
description | AbstractSignal control devices have been continuously evolving to make green assignments more responsive to traffic. Recent advances in connected and automated vehicles (CAVs) provide new opportunities to achieve higher performance levels for signalized intersections through an increased coordination level between vehicles and control devices. This study compares two state-of-the-art intersection management algorithms (IMAs) for CAVs and conventional vehicles (CNVs) to an actuated signal control system (ASCS). The two IMAs, the intelligent intersection control algorithm (IICA) and hybrid autonomous intersection management (H-AIM), are designed to enhance the efficiency of intersections by leveraging vehicle automation and connectivity. Our results show that the performance of both IICA and H-AIM improves as the CAV penetration rate increases. H-AIM attains lower average travel times than the state-of-the-practice ASCS only at a CAV penetration rate of 90% and greater. IICA, which jointly optimizes signal phase and timing (SPaT) and CAV trajectories, achieves the best average travel times and throughput for a wide range of CAV ratios. H-AIM yields lower average travel time and higher throughput compared to IICA at penetration rates close to 100%. |
doi_str_mv | 10.1061/JTEPBS.0000409 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2415211871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415211871</sourcerecordid><originalsourceid>FETCH-LOGICAL-a331t-524c0e3223fcd5c18bf6c0831b5153286fb4b123acaa2a9695c9a80ae06d0ae33</originalsourceid><addsrcrecordid>eNp1kMtLw0AQxhdRsNRePS94lNR95OmtlqqVgoVWr2GymdiUPOruplL_erek4sk5zAzM7_sYPkKuORtzFvK7l_Vs-bAaM1c-S87IQPiR9EScyPPfPWHRJRkZs3UMj2IZRMmAwKr8aKAqvzGn88aiNqhs2TZ0ibpodQ2NQvpV2g2ddLatwToOmpxO22aPzZGEir7jplQVmns6cYd6BxpsuUe6sl1-uCIXBVQGR6c5JG-Ps_X02Vu8Ps2nk4UHUnLrBcJXDKUQslB5oHicFaFiseRZwAMp4rDI_IwLCQpAQBImgUogZoAszF2Xckhuet-dbj87NDbdtp1275lU-DwQnMcRd9S4p5RujdFYpDtd1qAPKWfpMcm0TzI9JekEt70AjMI_y3_oH0lDdB4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415211871</pqid></control><display><type>article</type><title>Signalized Intersection Performance with Automated and Conventional Vehicles: A Comparative Study</title><source>ASCE All titles</source><creator>Pourmehrab, Mahmoud ; Emami, Patrick ; Martin-Gasulla, Marilo ; Wilson, Jabari ; Elefteriadou, Lily ; Ranka, Sanjay</creator><creatorcontrib>Pourmehrab, Mahmoud ; Emami, Patrick ; Martin-Gasulla, Marilo ; Wilson, Jabari ; Elefteriadou, Lily ; Ranka, Sanjay</creatorcontrib><description>AbstractSignal control devices have been continuously evolving to make green assignments more responsive to traffic. Recent advances in connected and automated vehicles (CAVs) provide new opportunities to achieve higher performance levels for signalized intersections through an increased coordination level between vehicles and control devices. This study compares two state-of-the-art intersection management algorithms (IMAs) for CAVs and conventional vehicles (CNVs) to an actuated signal control system (ASCS). The two IMAs, the intelligent intersection control algorithm (IICA) and hybrid autonomous intersection management (H-AIM), are designed to enhance the efficiency of intersections by leveraging vehicle automation and connectivity. Our results show that the performance of both IICA and H-AIM improves as the CAV penetration rate increases. H-AIM attains lower average travel times than the state-of-the-practice ASCS only at a CAV penetration rate of 90% and greater. IICA, which jointly optimizes signal phase and timing (SPaT) and CAV trajectories, achieves the best average travel times and throughput for a wide range of CAV ratios. H-AIM yields lower average travel time and higher throughput compared to IICA at penetration rates close to 100%.</description><identifier>ISSN: 2473-2907</identifier><identifier>EISSN: 2473-2893</identifier><identifier>DOI: 10.1061/JTEPBS.0000409</identifier><language>eng</language><publisher>Reston: American Society of Civil Engineers</publisher><subject>Algorithms ; Automation ; Comparative studies ; Control algorithms ; Control theory ; Intersections ; Penetration ; State-of-the-art reviews ; Technical Papers ; Travel time ; Vehicles</subject><ispartof>Journal of transportation engineering, Part A, 2020-09, Vol.146 (9)</ispartof><rights>2020 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a331t-524c0e3223fcd5c18bf6c0831b5153286fb4b123acaa2a9695c9a80ae06d0ae33</citedby><cites>FETCH-LOGICAL-a331t-524c0e3223fcd5c18bf6c0831b5153286fb4b123acaa2a9695c9a80ae06d0ae33</cites><orcidid>0000-0002-6345-0215 ; 0000-0001-9065-0485 ; 0000-0002-3017-9705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/JTEPBS.0000409$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/JTEPBS.0000409$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,75966,75974</link.rule.ids></links><search><creatorcontrib>Pourmehrab, Mahmoud</creatorcontrib><creatorcontrib>Emami, Patrick</creatorcontrib><creatorcontrib>Martin-Gasulla, Marilo</creatorcontrib><creatorcontrib>Wilson, Jabari</creatorcontrib><creatorcontrib>Elefteriadou, Lily</creatorcontrib><creatorcontrib>Ranka, Sanjay</creatorcontrib><title>Signalized Intersection Performance with Automated and Conventional Vehicles: A Comparative Study</title><title>Journal of transportation engineering, Part A</title><description>AbstractSignal control devices have been continuously evolving to make green assignments more responsive to traffic. Recent advances in connected and automated vehicles (CAVs) provide new opportunities to achieve higher performance levels for signalized intersections through an increased coordination level between vehicles and control devices. This study compares two state-of-the-art intersection management algorithms (IMAs) for CAVs and conventional vehicles (CNVs) to an actuated signal control system (ASCS). The two IMAs, the intelligent intersection control algorithm (IICA) and hybrid autonomous intersection management (H-AIM), are designed to enhance the efficiency of intersections by leveraging vehicle automation and connectivity. Our results show that the performance of both IICA and H-AIM improves as the CAV penetration rate increases. H-AIM attains lower average travel times than the state-of-the-practice ASCS only at a CAV penetration rate of 90% and greater. IICA, which jointly optimizes signal phase and timing (SPaT) and CAV trajectories, achieves the best average travel times and throughput for a wide range of CAV ratios. H-AIM yields lower average travel time and higher throughput compared to IICA at penetration rates close to 100%.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Comparative studies</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Intersections</subject><subject>Penetration</subject><subject>State-of-the-art reviews</subject><subject>Technical Papers</subject><subject>Travel time</subject><subject>Vehicles</subject><issn>2473-2907</issn><issn>2473-2893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtLw0AQxhdRsNRePS94lNR95OmtlqqVgoVWr2GymdiUPOruplL_erek4sk5zAzM7_sYPkKuORtzFvK7l_Vs-bAaM1c-S87IQPiR9EScyPPfPWHRJRkZs3UMj2IZRMmAwKr8aKAqvzGn88aiNqhs2TZ0ibpodQ2NQvpV2g2ddLatwToOmpxO22aPzZGEir7jplQVmns6cYd6BxpsuUe6sl1-uCIXBVQGR6c5JG-Ps_X02Vu8Ps2nk4UHUnLrBcJXDKUQslB5oHicFaFiseRZwAMp4rDI_IwLCQpAQBImgUogZoAszF2Xckhuet-dbj87NDbdtp1275lU-DwQnMcRd9S4p5RujdFYpDtd1qAPKWfpMcm0TzI9JekEt70AjMI_y3_oH0lDdB4</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Pourmehrab, Mahmoud</creator><creator>Emami, Patrick</creator><creator>Martin-Gasulla, Marilo</creator><creator>Wilson, Jabari</creator><creator>Elefteriadou, Lily</creator><creator>Ranka, Sanjay</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-6345-0215</orcidid><orcidid>https://orcid.org/0000-0001-9065-0485</orcidid><orcidid>https://orcid.org/0000-0002-3017-9705</orcidid></search><sort><creationdate>20200901</creationdate><title>Signalized Intersection Performance with Automated and Conventional Vehicles: A Comparative Study</title><author>Pourmehrab, Mahmoud ; Emami, Patrick ; Martin-Gasulla, Marilo ; Wilson, Jabari ; Elefteriadou, Lily ; Ranka, Sanjay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a331t-524c0e3223fcd5c18bf6c0831b5153286fb4b123acaa2a9695c9a80ae06d0ae33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Comparative studies</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Intersections</topic><topic>Penetration</topic><topic>State-of-the-art reviews</topic><topic>Technical Papers</topic><topic>Travel time</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pourmehrab, Mahmoud</creatorcontrib><creatorcontrib>Emami, Patrick</creatorcontrib><creatorcontrib>Martin-Gasulla, Marilo</creatorcontrib><creatorcontrib>Wilson, Jabari</creatorcontrib><creatorcontrib>Elefteriadou, Lily</creatorcontrib><creatorcontrib>Ranka, Sanjay</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of transportation engineering, Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pourmehrab, Mahmoud</au><au>Emami, Patrick</au><au>Martin-Gasulla, Marilo</au><au>Wilson, Jabari</au><au>Elefteriadou, Lily</au><au>Ranka, Sanjay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signalized Intersection Performance with Automated and Conventional Vehicles: A Comparative Study</atitle><jtitle>Journal of transportation engineering, Part A</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>146</volume><issue>9</issue><issn>2473-2907</issn><eissn>2473-2893</eissn><abstract>AbstractSignal control devices have been continuously evolving to make green assignments more responsive to traffic. Recent advances in connected and automated vehicles (CAVs) provide new opportunities to achieve higher performance levels for signalized intersections through an increased coordination level between vehicles and control devices. This study compares two state-of-the-art intersection management algorithms (IMAs) for CAVs and conventional vehicles (CNVs) to an actuated signal control system (ASCS). The two IMAs, the intelligent intersection control algorithm (IICA) and hybrid autonomous intersection management (H-AIM), are designed to enhance the efficiency of intersections by leveraging vehicle automation and connectivity. Our results show that the performance of both IICA and H-AIM improves as the CAV penetration rate increases. H-AIM attains lower average travel times than the state-of-the-practice ASCS only at a CAV penetration rate of 90% and greater. IICA, which jointly optimizes signal phase and timing (SPaT) and CAV trajectories, achieves the best average travel times and throughput for a wide range of CAV ratios. H-AIM yields lower average travel time and higher throughput compared to IICA at penetration rates close to 100%.</abstract><cop>Reston</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/JTEPBS.0000409</doi><orcidid>https://orcid.org/0000-0002-6345-0215</orcidid><orcidid>https://orcid.org/0000-0001-9065-0485</orcidid><orcidid>https://orcid.org/0000-0002-3017-9705</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2473-2907 |
ispartof | Journal of transportation engineering, Part A, 2020-09, Vol.146 (9) |
issn | 2473-2907 2473-2893 |
language | eng |
recordid | cdi_proquest_journals_2415211871 |
source | ASCE All titles |
subjects | Algorithms Automation Comparative studies Control algorithms Control theory Intersections Penetration State-of-the-art reviews Technical Papers Travel time Vehicles |
title | Signalized Intersection Performance with Automated and Conventional Vehicles: A Comparative Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A32%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signalized%20Intersection%20Performance%20with%20Automated%20and%20Conventional%20Vehicles:%20A%20Comparative%20Study&rft.jtitle=Journal%20of%20transportation%20engineering,%20Part%20A&rft.au=Pourmehrab,%20Mahmoud&rft.date=2020-09-01&rft.volume=146&rft.issue=9&rft.issn=2473-2907&rft.eissn=2473-2893&rft_id=info:doi/10.1061/JTEPBS.0000409&rft_dat=%3Cproquest_cross%3E2415211871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415211871&rft_id=info:pmid/&rfr_iscdi=true |