Discussion of "Prediction, Estimation, and Attribution" by Bradley Efron
Professor Efron has presented us with a thought-provoking paper on the relationship between prediction, estimation, and attribution in the modern era of data science. While we appreciate many of his arguments, we see more of a continuum between the old and new methodology, and the opportunity for bo...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 2020-04, Vol.115 (530), p.665-666 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 666 |
---|---|
container_issue | 530 |
container_start_page | 665 |
container_title | Journal of the American Statistical Association |
container_volume | 115 |
creator | Friedman, Jerome Hastie, Trevor Tibshirani, Robert |
description | Professor Efron has presented us with a thought-provoking paper on the relationship between prediction, estimation, and attribution in the modern era of data science. While we appreciate many of his arguments, we see more of a continuum between the old and new methodology, and the opportunity for both to improve through their synergy. |
doi_str_mv | 10.1080/01621459.2020.1762617 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2415116635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415116635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-556782dbd52a1c0f6d4984e65f10c9c142bf6c193005fe8c75fc1076fa43ddac3</originalsourceid><addsrcrecordid>eNp9UMFKxDAQDaLguvoJQlmvds0kTdLe1HV1hQU9KHgLadJAl26zJi3Svzel69W5zMzjvTfMQ-ga8BJwju8wcAIZK5YEkwgJTjiIEzQDRkVKRPZ1imYjJx1J5-gihB2OJfJ8hjZPddB9CLVrE2eTxbuvTK27uN4m69DVezXNqjXJQ9f5uuxHYJGUQ_LolWmqIVlb79pLdGZVE6qrY5-jz-f1x2qTbt9eXlcP21RTKLqUMS5yYkrDiAKNLTdZkWcVZxawLjRkpLRcQ0ExZrbKtWBWAxbcqowaozSdo5vJ9-Ddd1-FTu5c79t4UpIMGADnlEUWm1jauxB8ZeXBx1_8IAHLMTT5F5ocQ5PH0KLuftLVrXV-r36cb4zs1NA4b71qdR0k_d_iF8Hhch0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415116635</pqid></control><display><type>article</type><title>Discussion of "Prediction, Estimation, and Attribution" by Bradley Efron</title><source>Taylor & Francis Journals Complete</source><creator>Friedman, Jerome ; Hastie, Trevor ; Tibshirani, Robert</creator><creatorcontrib>Friedman, Jerome ; Hastie, Trevor ; Tibshirani, Robert</creatorcontrib><description>Professor Efron has presented us with a thought-provoking paper on the relationship between prediction, estimation, and attribution in the modern era of data science. While we appreciate many of his arguments, we see more of a continuum between the old and new methodology, and the opportunity for both to improve through their synergy.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2020.1762617</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis</publisher><subject>Attribution ; Predictions ; Regression analysis ; Statistical methods ; Statistics</subject><ispartof>Journal of the American Statistical Association, 2020-04, Vol.115 (530), p.665-666</ispartof><rights>2020 American Statistical Association 2020</rights><rights>2020 American Statistical Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c319t-556782dbd52a1c0f6d4984e65f10c9c142bf6c193005fe8c75fc1076fa43ddac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01621459.2020.1762617$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01621459.2020.1762617$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Friedman, Jerome</creatorcontrib><creatorcontrib>Hastie, Trevor</creatorcontrib><creatorcontrib>Tibshirani, Robert</creatorcontrib><title>Discussion of "Prediction, Estimation, and Attribution" by Bradley Efron</title><title>Journal of the American Statistical Association</title><description>Professor Efron has presented us with a thought-provoking paper on the relationship between prediction, estimation, and attribution in the modern era of data science. While we appreciate many of his arguments, we see more of a continuum between the old and new methodology, and the opportunity for both to improve through their synergy.</description><subject>Attribution</subject><subject>Predictions</subject><subject>Regression analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKxDAQDaLguvoJQlmvds0kTdLe1HV1hQU9KHgLadJAl26zJi3Svzel69W5zMzjvTfMQ-ga8BJwju8wcAIZK5YEkwgJTjiIEzQDRkVKRPZ1imYjJx1J5-gihB2OJfJ8hjZPddB9CLVrE2eTxbuvTK27uN4m69DVezXNqjXJQ9f5uuxHYJGUQ_LolWmqIVlb79pLdGZVE6qrY5-jz-f1x2qTbt9eXlcP21RTKLqUMS5yYkrDiAKNLTdZkWcVZxawLjRkpLRcQ0ExZrbKtWBWAxbcqowaozSdo5vJ9-Ddd1-FTu5c79t4UpIMGADnlEUWm1jauxB8ZeXBx1_8IAHLMTT5F5ocQ5PH0KLuftLVrXV-r36cb4zs1NA4b71qdR0k_d_iF8Hhch0</recordid><startdate>20200402</startdate><enddate>20200402</enddate><creator>Friedman, Jerome</creator><creator>Hastie, Trevor</creator><creator>Tibshirani, Robert</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20200402</creationdate><title>Discussion of "Prediction, Estimation, and Attribution" by Bradley Efron</title><author>Friedman, Jerome ; Hastie, Trevor ; Tibshirani, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-556782dbd52a1c0f6d4984e65f10c9c142bf6c193005fe8c75fc1076fa43ddac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Attribution</topic><topic>Predictions</topic><topic>Regression analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friedman, Jerome</creatorcontrib><creatorcontrib>Hastie, Trevor</creatorcontrib><creatorcontrib>Tibshirani, Robert</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friedman, Jerome</au><au>Hastie, Trevor</au><au>Tibshirani, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discussion of "Prediction, Estimation, and Attribution" by Bradley Efron</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2020-04-02</date><risdate>2020</risdate><volume>115</volume><issue>530</issue><spage>665</spage><epage>666</epage><pages>665-666</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>Professor Efron has presented us with a thought-provoking paper on the relationship between prediction, estimation, and attribution in the modern era of data science. While we appreciate many of his arguments, we see more of a continuum between the old and new methodology, and the opportunity for both to improve through their synergy.</abstract><cop>Alexandria</cop><pub>Taylor & Francis</pub><doi>10.1080/01621459.2020.1762617</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 2020-04, Vol.115 (530), p.665-666 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_proquest_journals_2415116635 |
source | Taylor & Francis Journals Complete |
subjects | Attribution Predictions Regression analysis Statistical methods Statistics |
title | Discussion of "Prediction, Estimation, and Attribution" by Bradley Efron |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A44%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discussion%20of%20%22Prediction,%20Estimation,%20and%20Attribution%22%20by%20Bradley%20Efron&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Friedman,%20Jerome&rft.date=2020-04-02&rft.volume=115&rft.issue=530&rft.spage=665&rft.epage=666&rft.pages=665-666&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2020.1762617&rft_dat=%3Cproquest_cross%3E2415116635%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415116635&rft_id=info:pmid/&rfr_iscdi=true |