Mo-doped δ-MnO2 anode material synthesis and electrochemical performance for lithium-ion batteries
The present study synthesized Mo-doped δ-MnO 2 powders with different doping ratios by implementing hydrothermal method. Various analyses, namely X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), the Brunauer–Emmett–Teller (BET) method, Raman spectr...
Gespeichert in:
Veröffentlicht in: | Journal of applied electrochemistry 2020-07, Vol.50 (7), p.733-744 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 744 |
---|---|
container_issue | 7 |
container_start_page | 733 |
container_title | Journal of applied electrochemistry |
container_volume | 50 |
creator | Xia, Ao Zhao, Chenpeng Yu, Wanru Han, Yuepeng Yi, Jue Tan, Guoqiang |
description | The present study synthesized Mo-doped δ-MnO
2
powders with different doping ratios by implementing hydrothermal method. Various analyses, namely X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), the Brunauer–Emmett–Teller (BET) method, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence spectrometer (XRF), and electrochemical measurements, were applied to characterize the dependence of the δ-MnO
2
structure, morphology and electrochemical performance on Mo-doping. The experimental results indicated Mo
6+
ions entered into the δ-MnO
2
crystal lattice and occupied the Mn sites. Appropriate amount of Mo
6+
ions doping decreases the charge transfer resistance and increases the Li
+
ion diffusion coefficient, thus producing optimal electrochemical performance. The Mo 5% sample with Mo
6+
/Mn
2+
molar ratio of 5:100 in the original solution presented a specific charge capacity of 476.8 mAh g
−1
after 100 cycles at 1000 mA g
−1
as well as capacity retention ratio of 112.7%.
Graphic abstract |
doi_str_mv | 10.1007/s10800-020-01431-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2415109299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415109299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-924de5e94e8ce383be78d13fc27cbdaa49e4f3c2cfd9e1fd3f3a1503685a7fe43</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWKsv4CngOZp_202OUvwHLb0oeAtpMrFbdjc12R76Xj6Hz2R0BW8ehhmY7_uG-SF0yeg1o7S-yYwqSgnlpZgUjPAjNGFVzYlSQh2jCaWcEaXZ6yk6y3lLKdV8JifILSPxcQcef36QZb_i2PbRA-7sAKmxLc6HfthAbnJZeAwtuCFFt4GucWW7gxRi6mzvAJcBt82wafYdaWKP13b4zoB8jk6CbTNc_PYperm_e54_ksXq4Wl-uyBOMD0QzaWHCrQE5UAosYZaeSaC47Vbe2ulBhmE4y54DSx4EYRlFRUzVdk6gBRTdDXm7lJ830MezDbuU19OGi5ZxcrLWhcVH1UuxZwTBLNLTWfTwTBqvmGaEaYpMM0PTMOLSYymXMT9G6S_6H9cXxwWeds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415109299</pqid></control><display><type>article</type><title>Mo-doped δ-MnO2 anode material synthesis and electrochemical performance for lithium-ion batteries</title><source>SpringerNature Journals</source><creator>Xia, Ao ; Zhao, Chenpeng ; Yu, Wanru ; Han, Yuepeng ; Yi, Jue ; Tan, Guoqiang</creator><creatorcontrib>Xia, Ao ; Zhao, Chenpeng ; Yu, Wanru ; Han, Yuepeng ; Yi, Jue ; Tan, Guoqiang</creatorcontrib><description>The present study synthesized Mo-doped δ-MnO
2
powders with different doping ratios by implementing hydrothermal method. Various analyses, namely X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), the Brunauer–Emmett–Teller (BET) method, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence spectrometer (XRF), and electrochemical measurements, were applied to characterize the dependence of the δ-MnO
2
structure, morphology and electrochemical performance on Mo-doping. The experimental results indicated Mo
6+
ions entered into the δ-MnO
2
crystal lattice and occupied the Mn sites. Appropriate amount of Mo
6+
ions doping decreases the charge transfer resistance and increases the Li
+
ion diffusion coefficient, thus producing optimal electrochemical performance. The Mo 5% sample with Mo
6+
/Mn
2+
molar ratio of 5:100 in the original solution presented a specific charge capacity of 476.8 mAh g
−1
after 100 cycles at 1000 mA g
−1
as well as capacity retention ratio of 112.7%.
Graphic abstract</description><identifier>ISSN: 0021-891X</identifier><identifier>EISSN: 1572-8838</identifier><identifier>DOI: 10.1007/s10800-020-01431-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Anodes ; Batteries ; Charge transfer ; Chemistry ; Chemistry and Materials Science ; Crystal lattices ; Diffusion coefficient ; Doping ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Electron microscopy ; Electrons ; Hydrothermal crystal growth ; Industrial Chemistry/Chemical Engineering ; Ion diffusion ; Lithium-ion batteries ; Manganese dioxide ; Microscopy ; Morphology ; Photoelectrons ; Physical Chemistry ; Raman spectroscopy ; Rechargeable batteries ; Research Article ; Spectrum analysis ; X ray photoelectron spectroscopy ; X-ray fluorescence</subject><ispartof>Journal of applied electrochemistry, 2020-07, Vol.50 (7), p.733-744</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-924de5e94e8ce383be78d13fc27cbdaa49e4f3c2cfd9e1fd3f3a1503685a7fe43</citedby><cites>FETCH-LOGICAL-c319t-924de5e94e8ce383be78d13fc27cbdaa49e4f3c2cfd9e1fd3f3a1503685a7fe43</cites><orcidid>0000-0002-4517-0287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10800-020-01431-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10800-020-01431-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xia, Ao</creatorcontrib><creatorcontrib>Zhao, Chenpeng</creatorcontrib><creatorcontrib>Yu, Wanru</creatorcontrib><creatorcontrib>Han, Yuepeng</creatorcontrib><creatorcontrib>Yi, Jue</creatorcontrib><creatorcontrib>Tan, Guoqiang</creatorcontrib><title>Mo-doped δ-MnO2 anode material synthesis and electrochemical performance for lithium-ion batteries</title><title>Journal of applied electrochemistry</title><addtitle>J Appl Electrochem</addtitle><description>The present study synthesized Mo-doped δ-MnO
2
powders with different doping ratios by implementing hydrothermal method. Various analyses, namely X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), the Brunauer–Emmett–Teller (BET) method, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence spectrometer (XRF), and electrochemical measurements, were applied to characterize the dependence of the δ-MnO
2
structure, morphology and electrochemical performance on Mo-doping. The experimental results indicated Mo
6+
ions entered into the δ-MnO
2
crystal lattice and occupied the Mn sites. Appropriate amount of Mo
6+
ions doping decreases the charge transfer resistance and increases the Li
+
ion diffusion coefficient, thus producing optimal electrochemical performance. The Mo 5% sample with Mo
6+
/Mn
2+
molar ratio of 5:100 in the original solution presented a specific charge capacity of 476.8 mAh g
−1
after 100 cycles at 1000 mA g
−1
as well as capacity retention ratio of 112.7%.
Graphic abstract</description><subject>Anodes</subject><subject>Batteries</subject><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Crystal lattices</subject><subject>Diffusion coefficient</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electron microscopy</subject><subject>Electrons</subject><subject>Hydrothermal crystal growth</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Ion diffusion</subject><subject>Lithium-ion batteries</subject><subject>Manganese dioxide</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Photoelectrons</subject><subject>Physical Chemistry</subject><subject>Raman spectroscopy</subject><subject>Rechargeable batteries</subject><subject>Research Article</subject><subject>Spectrum analysis</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray fluorescence</subject><issn>0021-891X</issn><issn>1572-8838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWKsv4CngOZp_202OUvwHLb0oeAtpMrFbdjc12R76Xj6Hz2R0BW8ehhmY7_uG-SF0yeg1o7S-yYwqSgnlpZgUjPAjNGFVzYlSQh2jCaWcEaXZ6yk6y3lLKdV8JifILSPxcQcef36QZb_i2PbRA-7sAKmxLc6HfthAbnJZeAwtuCFFt4GucWW7gxRi6mzvAJcBt82wafYdaWKP13b4zoB8jk6CbTNc_PYperm_e54_ksXq4Wl-uyBOMD0QzaWHCrQE5UAosYZaeSaC47Vbe2ulBhmE4y54DSx4EYRlFRUzVdk6gBRTdDXm7lJ830MezDbuU19OGi5ZxcrLWhcVH1UuxZwTBLNLTWfTwTBqvmGaEaYpMM0PTMOLSYymXMT9G6S_6H9cXxwWeds</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Xia, Ao</creator><creator>Zhao, Chenpeng</creator><creator>Yu, Wanru</creator><creator>Han, Yuepeng</creator><creator>Yi, Jue</creator><creator>Tan, Guoqiang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4517-0287</orcidid></search><sort><creationdate>20200701</creationdate><title>Mo-doped δ-MnO2 anode material synthesis and electrochemical performance for lithium-ion batteries</title><author>Xia, Ao ; Zhao, Chenpeng ; Yu, Wanru ; Han, Yuepeng ; Yi, Jue ; Tan, Guoqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-924de5e94e8ce383be78d13fc27cbdaa49e4f3c2cfd9e1fd3f3a1503685a7fe43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Crystal lattices</topic><topic>Diffusion coefficient</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electron microscopy</topic><topic>Electrons</topic><topic>Hydrothermal crystal growth</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Ion diffusion</topic><topic>Lithium-ion batteries</topic><topic>Manganese dioxide</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Photoelectrons</topic><topic>Physical Chemistry</topic><topic>Raman spectroscopy</topic><topic>Rechargeable batteries</topic><topic>Research Article</topic><topic>Spectrum analysis</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Ao</creatorcontrib><creatorcontrib>Zhao, Chenpeng</creatorcontrib><creatorcontrib>Yu, Wanru</creatorcontrib><creatorcontrib>Han, Yuepeng</creatorcontrib><creatorcontrib>Yi, Jue</creatorcontrib><creatorcontrib>Tan, Guoqiang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Ao</au><au>Zhao, Chenpeng</au><au>Yu, Wanru</au><au>Han, Yuepeng</au><au>Yi, Jue</au><au>Tan, Guoqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mo-doped δ-MnO2 anode material synthesis and electrochemical performance for lithium-ion batteries</atitle><jtitle>Journal of applied electrochemistry</jtitle><stitle>J Appl Electrochem</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>50</volume><issue>7</issue><spage>733</spage><epage>744</epage><pages>733-744</pages><issn>0021-891X</issn><eissn>1572-8838</eissn><abstract>The present study synthesized Mo-doped δ-MnO
2
powders with different doping ratios by implementing hydrothermal method. Various analyses, namely X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), the Brunauer–Emmett–Teller (BET) method, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence spectrometer (XRF), and electrochemical measurements, were applied to characterize the dependence of the δ-MnO
2
structure, morphology and electrochemical performance on Mo-doping. The experimental results indicated Mo
6+
ions entered into the δ-MnO
2
crystal lattice and occupied the Mn sites. Appropriate amount of Mo
6+
ions doping decreases the charge transfer resistance and increases the Li
+
ion diffusion coefficient, thus producing optimal electrochemical performance. The Mo 5% sample with Mo
6+
/Mn
2+
molar ratio of 5:100 in the original solution presented a specific charge capacity of 476.8 mAh g
−1
after 100 cycles at 1000 mA g
−1
as well as capacity retention ratio of 112.7%.
Graphic abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10800-020-01431-2</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4517-0287</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-891X |
ispartof | Journal of applied electrochemistry, 2020-07, Vol.50 (7), p.733-744 |
issn | 0021-891X 1572-8838 |
language | eng |
recordid | cdi_proquest_journals_2415109299 |
source | SpringerNature Journals |
subjects | Anodes Batteries Charge transfer Chemistry Chemistry and Materials Science Crystal lattices Diffusion coefficient Doping Electrochemical analysis Electrochemistry Electrode materials Electron microscopy Electrons Hydrothermal crystal growth Industrial Chemistry/Chemical Engineering Ion diffusion Lithium-ion batteries Manganese dioxide Microscopy Morphology Photoelectrons Physical Chemistry Raman spectroscopy Rechargeable batteries Research Article Spectrum analysis X ray photoelectron spectroscopy X-ray fluorescence |
title | Mo-doped δ-MnO2 anode material synthesis and electrochemical performance for lithium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mo-doped%20%CE%B4-MnO2%20anode%20material%20synthesis%20and%20electrochemical%20performance%20for%20lithium-ion%20batteries&rft.jtitle=Journal%20of%20applied%20electrochemistry&rft.au=Xia,%20Ao&rft.date=2020-07-01&rft.volume=50&rft.issue=7&rft.spage=733&rft.epage=744&rft.pages=733-744&rft.issn=0021-891X&rft.eissn=1572-8838&rft_id=info:doi/10.1007/s10800-020-01431-2&rft_dat=%3Cproquest_cross%3E2415109299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415109299&rft_id=info:pmid/&rfr_iscdi=true |