Mo-doped δ-MnO2 anode material synthesis and electrochemical performance for lithium-ion batteries

The present study synthesized Mo-doped δ-MnO 2 powders with different doping ratios by implementing hydrothermal method. Various analyses, namely X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), the Brunauer–Emmett–Teller (BET) method, Raman spectr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied electrochemistry 2020-07, Vol.50 (7), p.733-744
Hauptverfasser: Xia, Ao, Zhao, Chenpeng, Yu, Wanru, Han, Yuepeng, Yi, Jue, Tan, Guoqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 744
container_issue 7
container_start_page 733
container_title Journal of applied electrochemistry
container_volume 50
creator Xia, Ao
Zhao, Chenpeng
Yu, Wanru
Han, Yuepeng
Yi, Jue
Tan, Guoqiang
description The present study synthesized Mo-doped δ-MnO 2 powders with different doping ratios by implementing hydrothermal method. Various analyses, namely X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), the Brunauer–Emmett–Teller (BET) method, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence spectrometer (XRF), and electrochemical measurements, were applied to characterize the dependence of the δ-MnO 2 structure, morphology and electrochemical performance on Mo-doping. The experimental results indicated Mo 6+ ions entered into the δ-MnO 2 crystal lattice and occupied the Mn sites. Appropriate amount of Mo 6+ ions doping decreases the charge transfer resistance and increases the Li + ion diffusion coefficient, thus producing optimal electrochemical performance. The Mo 5% sample with Mo 6+ /Mn 2+ molar ratio of 5:100 in the original solution presented a specific charge capacity of 476.8 mAh g −1 after 100 cycles at 1000 mA g −1 as well as capacity retention ratio of 112.7%. Graphic abstract
doi_str_mv 10.1007/s10800-020-01431-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2415109299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415109299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-924de5e94e8ce383be78d13fc27cbdaa49e4f3c2cfd9e1fd3f3a1503685a7fe43</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWKsv4CngOZp_202OUvwHLb0oeAtpMrFbdjc12R76Xj6Hz2R0BW8ehhmY7_uG-SF0yeg1o7S-yYwqSgnlpZgUjPAjNGFVzYlSQh2jCaWcEaXZ6yk6y3lLKdV8JifILSPxcQcef36QZb_i2PbRA-7sAKmxLc6HfthAbnJZeAwtuCFFt4GucWW7gxRi6mzvAJcBt82wafYdaWKP13b4zoB8jk6CbTNc_PYperm_e54_ksXq4Wl-uyBOMD0QzaWHCrQE5UAosYZaeSaC47Vbe2ulBhmE4y54DSx4EYRlFRUzVdk6gBRTdDXm7lJ830MezDbuU19OGi5ZxcrLWhcVH1UuxZwTBLNLTWfTwTBqvmGaEaYpMM0PTMOLSYymXMT9G6S_6H9cXxwWeds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415109299</pqid></control><display><type>article</type><title>Mo-doped δ-MnO2 anode material synthesis and electrochemical performance for lithium-ion batteries</title><source>SpringerNature Journals</source><creator>Xia, Ao ; Zhao, Chenpeng ; Yu, Wanru ; Han, Yuepeng ; Yi, Jue ; Tan, Guoqiang</creator><creatorcontrib>Xia, Ao ; Zhao, Chenpeng ; Yu, Wanru ; Han, Yuepeng ; Yi, Jue ; Tan, Guoqiang</creatorcontrib><description>The present study synthesized Mo-doped δ-MnO 2 powders with different doping ratios by implementing hydrothermal method. Various analyses, namely X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), the Brunauer–Emmett–Teller (BET) method, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence spectrometer (XRF), and electrochemical measurements, were applied to characterize the dependence of the δ-MnO 2 structure, morphology and electrochemical performance on Mo-doping. The experimental results indicated Mo 6+ ions entered into the δ-MnO 2 crystal lattice and occupied the Mn sites. Appropriate amount of Mo 6+ ions doping decreases the charge transfer resistance and increases the Li + ion diffusion coefficient, thus producing optimal electrochemical performance. The Mo 5% sample with Mo 6+ /Mn 2+ molar ratio of 5:100 in the original solution presented a specific charge capacity of 476.8 mAh g −1 after 100 cycles at 1000 mA g −1 as well as capacity retention ratio of 112.7%. Graphic abstract</description><identifier>ISSN: 0021-891X</identifier><identifier>EISSN: 1572-8838</identifier><identifier>DOI: 10.1007/s10800-020-01431-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Anodes ; Batteries ; Charge transfer ; Chemistry ; Chemistry and Materials Science ; Crystal lattices ; Diffusion coefficient ; Doping ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Electron microscopy ; Electrons ; Hydrothermal crystal growth ; Industrial Chemistry/Chemical Engineering ; Ion diffusion ; Lithium-ion batteries ; Manganese dioxide ; Microscopy ; Morphology ; Photoelectrons ; Physical Chemistry ; Raman spectroscopy ; Rechargeable batteries ; Research Article ; Spectrum analysis ; X ray photoelectron spectroscopy ; X-ray fluorescence</subject><ispartof>Journal of applied electrochemistry, 2020-07, Vol.50 (7), p.733-744</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-924de5e94e8ce383be78d13fc27cbdaa49e4f3c2cfd9e1fd3f3a1503685a7fe43</citedby><cites>FETCH-LOGICAL-c319t-924de5e94e8ce383be78d13fc27cbdaa49e4f3c2cfd9e1fd3f3a1503685a7fe43</cites><orcidid>0000-0002-4517-0287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10800-020-01431-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10800-020-01431-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xia, Ao</creatorcontrib><creatorcontrib>Zhao, Chenpeng</creatorcontrib><creatorcontrib>Yu, Wanru</creatorcontrib><creatorcontrib>Han, Yuepeng</creatorcontrib><creatorcontrib>Yi, Jue</creatorcontrib><creatorcontrib>Tan, Guoqiang</creatorcontrib><title>Mo-doped δ-MnO2 anode material synthesis and electrochemical performance for lithium-ion batteries</title><title>Journal of applied electrochemistry</title><addtitle>J Appl Electrochem</addtitle><description>The present study synthesized Mo-doped δ-MnO 2 powders with different doping ratios by implementing hydrothermal method. Various analyses, namely X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), the Brunauer–Emmett–Teller (BET) method, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence spectrometer (XRF), and electrochemical measurements, were applied to characterize the dependence of the δ-MnO 2 structure, morphology and electrochemical performance on Mo-doping. The experimental results indicated Mo 6+ ions entered into the δ-MnO 2 crystal lattice and occupied the Mn sites. Appropriate amount of Mo 6+ ions doping decreases the charge transfer resistance and increases the Li + ion diffusion coefficient, thus producing optimal electrochemical performance. The Mo 5% sample with Mo 6+ /Mn 2+ molar ratio of 5:100 in the original solution presented a specific charge capacity of 476.8 mAh g −1 after 100 cycles at 1000 mA g −1 as well as capacity retention ratio of 112.7%. Graphic abstract</description><subject>Anodes</subject><subject>Batteries</subject><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Crystal lattices</subject><subject>Diffusion coefficient</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electron microscopy</subject><subject>Electrons</subject><subject>Hydrothermal crystal growth</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Ion diffusion</subject><subject>Lithium-ion batteries</subject><subject>Manganese dioxide</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Photoelectrons</subject><subject>Physical Chemistry</subject><subject>Raman spectroscopy</subject><subject>Rechargeable batteries</subject><subject>Research Article</subject><subject>Spectrum analysis</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray fluorescence</subject><issn>0021-891X</issn><issn>1572-8838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWKsv4CngOZp_202OUvwHLb0oeAtpMrFbdjc12R76Xj6Hz2R0BW8ehhmY7_uG-SF0yeg1o7S-yYwqSgnlpZgUjPAjNGFVzYlSQh2jCaWcEaXZ6yk6y3lLKdV8JifILSPxcQcef36QZb_i2PbRA-7sAKmxLc6HfthAbnJZeAwtuCFFt4GucWW7gxRi6mzvAJcBt82wafYdaWKP13b4zoB8jk6CbTNc_PYperm_e54_ksXq4Wl-uyBOMD0QzaWHCrQE5UAosYZaeSaC47Vbe2ulBhmE4y54DSx4EYRlFRUzVdk6gBRTdDXm7lJ830MezDbuU19OGi5ZxcrLWhcVH1UuxZwTBLNLTWfTwTBqvmGaEaYpMM0PTMOLSYymXMT9G6S_6H9cXxwWeds</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Xia, Ao</creator><creator>Zhao, Chenpeng</creator><creator>Yu, Wanru</creator><creator>Han, Yuepeng</creator><creator>Yi, Jue</creator><creator>Tan, Guoqiang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4517-0287</orcidid></search><sort><creationdate>20200701</creationdate><title>Mo-doped δ-MnO2 anode material synthesis and electrochemical performance for lithium-ion batteries</title><author>Xia, Ao ; Zhao, Chenpeng ; Yu, Wanru ; Han, Yuepeng ; Yi, Jue ; Tan, Guoqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-924de5e94e8ce383be78d13fc27cbdaa49e4f3c2cfd9e1fd3f3a1503685a7fe43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Crystal lattices</topic><topic>Diffusion coefficient</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electron microscopy</topic><topic>Electrons</topic><topic>Hydrothermal crystal growth</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Ion diffusion</topic><topic>Lithium-ion batteries</topic><topic>Manganese dioxide</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Photoelectrons</topic><topic>Physical Chemistry</topic><topic>Raman spectroscopy</topic><topic>Rechargeable batteries</topic><topic>Research Article</topic><topic>Spectrum analysis</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Ao</creatorcontrib><creatorcontrib>Zhao, Chenpeng</creatorcontrib><creatorcontrib>Yu, Wanru</creatorcontrib><creatorcontrib>Han, Yuepeng</creatorcontrib><creatorcontrib>Yi, Jue</creatorcontrib><creatorcontrib>Tan, Guoqiang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Ao</au><au>Zhao, Chenpeng</au><au>Yu, Wanru</au><au>Han, Yuepeng</au><au>Yi, Jue</au><au>Tan, Guoqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mo-doped δ-MnO2 anode material synthesis and electrochemical performance for lithium-ion batteries</atitle><jtitle>Journal of applied electrochemistry</jtitle><stitle>J Appl Electrochem</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>50</volume><issue>7</issue><spage>733</spage><epage>744</epage><pages>733-744</pages><issn>0021-891X</issn><eissn>1572-8838</eissn><abstract>The present study synthesized Mo-doped δ-MnO 2 powders with different doping ratios by implementing hydrothermal method. Various analyses, namely X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), the Brunauer–Emmett–Teller (BET) method, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence spectrometer (XRF), and electrochemical measurements, were applied to characterize the dependence of the δ-MnO 2 structure, morphology and electrochemical performance on Mo-doping. The experimental results indicated Mo 6+ ions entered into the δ-MnO 2 crystal lattice and occupied the Mn sites. Appropriate amount of Mo 6+ ions doping decreases the charge transfer resistance and increases the Li + ion diffusion coefficient, thus producing optimal electrochemical performance. The Mo 5% sample with Mo 6+ /Mn 2+ molar ratio of 5:100 in the original solution presented a specific charge capacity of 476.8 mAh g −1 after 100 cycles at 1000 mA g −1 as well as capacity retention ratio of 112.7%. Graphic abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10800-020-01431-2</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4517-0287</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-891X
ispartof Journal of applied electrochemistry, 2020-07, Vol.50 (7), p.733-744
issn 0021-891X
1572-8838
language eng
recordid cdi_proquest_journals_2415109299
source SpringerNature Journals
subjects Anodes
Batteries
Charge transfer
Chemistry
Chemistry and Materials Science
Crystal lattices
Diffusion coefficient
Doping
Electrochemical analysis
Electrochemistry
Electrode materials
Electron microscopy
Electrons
Hydrothermal crystal growth
Industrial Chemistry/Chemical Engineering
Ion diffusion
Lithium-ion batteries
Manganese dioxide
Microscopy
Morphology
Photoelectrons
Physical Chemistry
Raman spectroscopy
Rechargeable batteries
Research Article
Spectrum analysis
X ray photoelectron spectroscopy
X-ray fluorescence
title Mo-doped δ-MnO2 anode material synthesis and electrochemical performance for lithium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mo-doped%20%CE%B4-MnO2%20anode%20material%20synthesis%20and%20electrochemical%20performance%20for%20lithium-ion%20batteries&rft.jtitle=Journal%20of%20applied%20electrochemistry&rft.au=Xia,%20Ao&rft.date=2020-07-01&rft.volume=50&rft.issue=7&rft.spage=733&rft.epage=744&rft.pages=733-744&rft.issn=0021-891X&rft.eissn=1572-8838&rft_id=info:doi/10.1007/s10800-020-01431-2&rft_dat=%3Cproquest_cross%3E2415109299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415109299&rft_id=info:pmid/&rfr_iscdi=true